editor's blog
Subscribe Now

And the Ecosystem Starts

In today’s discussion of the move to 450-mm wafers, we looked at one of the first pieces of equipment that will initiate the entire development cascade necessary for handling these new behemoths. That’s what makes a wafer change so different from other transitions.

When we move from one silicon node to another, we typically have to replace a few pieces of equipment in the line, add some more for any new steps, and maybe swap out some parts of an existing tool. Not to minimize those things – they can be critical and expensive things to do.

But when the wafer size changes, you end up throwing everything out unless you’re really lucky (dual-size equipment can help soften the blow, but it still replaces the older single-size unit). It’s not just the fact that the size changes, but, more specifically, the fact that it’s getting bigger. Handlers and clearances and reaction chambers set up for older, smaller wafers will not likely be able to handle the new ones – even if the chemistry hasn’t changed.

That’s not to suggest that a wafer size change is only about making more room; as we saw, the size of the wafers brings new challenges of its own in addition to the simple fact of a new, bigger elephant in the fab.

The details that this involves were brought clearly home to me as I was writing the other piece. A press release came in announcing that Hine Automation had released its new STAR SL-450 automated load locks for 450-mm wafers. One of many, many such details that will need to be sorted to get an entire line outfitted for 450 mm.

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Package Evolution for MOSFETs and Diodes
Sponsored by Mouser Electronics and Vishay
A limiting factor for both MOSFETs and diodes is power dissipation per unit area and your choice of packaging can make a big difference in power dissipation. In this episode of Chalk Talk, Amelia Dalton and Brian Zachrel from Vishay investigate how package evolution has led to new advancements in diodes and MOSFETs including minimizing package resistance, increasing power density, and more! They also explore the benefits of using Vishay’s small and efficient PowerPAK® and eSMP® packages and the migration path you will need to keep in mind when using these solutions in your next design.
Jul 10, 2023
31,736 views