editor's blog
Subscribe Now

And the Ecosystem Starts

In today’s discussion of the move to 450-mm wafers, we looked at one of the first pieces of equipment that will initiate the entire development cascade necessary for handling these new behemoths. That’s what makes a wafer change so different from other transitions.

When we move from one silicon node to another, we typically have to replace a few pieces of equipment in the line, add some more for any new steps, and maybe swap out some parts of an existing tool. Not to minimize those things – they can be critical and expensive things to do.

But when the wafer size changes, you end up throwing everything out unless you’re really lucky (dual-size equipment can help soften the blow, but it still replaces the older single-size unit). It’s not just the fact that the size changes, but, more specifically, the fact that it’s getting bigger. Handlers and clearances and reaction chambers set up for older, smaller wafers will not likely be able to handle the new ones – even if the chemistry hasn’t changed.

That’s not to suggest that a wafer size change is only about making more room; as we saw, the size of the wafers brings new challenges of its own in addition to the simple fact of a new, bigger elephant in the fab.

The details that this involves were brought clearly home to me as I was writing the other piece. A press release came in announcing that Hine Automation had released its new STAR SL-450 automated load locks for 450-mm wafers. One of many, many such details that will need to be sorted to get an entire line outfitted for 450 mm.

Leave a Reply

featured blogs
Sep 5, 2024
I just discovered why my wife sees our green watering can as being blue (and why she says I see our blue watering can as being green)...

featured paper

A game-changer for IP designers: design-stage verification

Sponsored by Siemens Digital Industries Software

In this new technical paper, you’ll gain valuable insights into how, by moving physical verification earlier in the IP design flow, you can locate and correct design errors sooner, reducing costs and getting complex designs to market faster. Dive into the challenges of hard, soft and custom IP creation, and learn how to run targeted, real-time or on-demand physical verification with precision, earlier in the layout process.

Read more

featured chalk talk

Machine Learning on the Edge
Sponsored by Mouser Electronics and Infineon
Edge machine learning is a great way to allow embedded devices to run applications that can collect sensor data and locally process that data. In this episode of Chalk Talk, Amelia Dalton and Clark Jarvis from Infineon explore how the IMAGIMOB Studio, ModusToolbox™ Software, and PSoC and AURIX™ microcontrollers can help you develop a custom machine learning on the edge application from scratch. They also investigate how the IMAGIMOB Studio can help you easily develop and deploy AI/ML models and the benefits that the PSoC™ 6 Artificial Intelligence Evaluation Kit will bring to your next machine learning on the edge application design process.
Aug 12, 2024
14,142 views