editor's blog
Subscribe Now

And the Ecosystem Starts

In today’s discussion of the move to 450-mm wafers, we looked at one of the first pieces of equipment that will initiate the entire development cascade necessary for handling these new behemoths. That’s what makes a wafer change so different from other transitions.

When we move from one silicon node to another, we typically have to replace a few pieces of equipment in the line, add some more for any new steps, and maybe swap out some parts of an existing tool. Not to minimize those things – they can be critical and expensive things to do.

But when the wafer size changes, you end up throwing everything out unless you’re really lucky (dual-size equipment can help soften the blow, but it still replaces the older single-size unit). It’s not just the fact that the size changes, but, more specifically, the fact that it’s getting bigger. Handlers and clearances and reaction chambers set up for older, smaller wafers will not likely be able to handle the new ones – even if the chemistry hasn’t changed.

That’s not to suggest that a wafer size change is only about making more room; as we saw, the size of the wafers brings new challenges of its own in addition to the simple fact of a new, bigger elephant in the fab.

The details that this involves were brought clearly home to me as I was writing the other piece. A press release came in announcing that Hine Automation had released its new STAR SL-450 automated load locks for 450-mm wafers. One of many, many such details that will need to be sorted to get an entire line outfitted for 450 mm.

Leave a Reply

featured blogs
Apr 16, 2024
The accelerated innovations in semiconductor design have raised customers' expectations of getting smaller, faster, high-quality SoCs at lower costs. However, as a result, the SoC designs are getting complex, resulting in intricate design simulations and explosive data g...
Apr 16, 2024
Learn what IR Drop is, explore the chip design tools and techniques involved in power network analysis, and see how it accelerates the IC design flow.The post Leveraging Early Power Network Analysis to Accelerate Chip Design appeared first on Chip Design....
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Autonomous Mobile Robots
Sponsored by Mouser Electronics and onsemi
Robotic applications are now commonplace in a variety of segments in society and are growing in number each day. In this episode of Chalk Talk, Amelia Dalton and Alessandro Maggioni from onsemi discuss the details, functions, and benefits of autonomous mobile robots. They also examine the performance parameters of these kinds of robotic designs, the five main subsystems included in autonomous mobile robots, and how onsemi is furthering innovation in this arena.
Jan 24, 2024
12,204 views