editor's blog
Subscribe Now

And the Ecosystem Starts

In today’s discussion of the move to 450-mm wafers, we looked at one of the first pieces of equipment that will initiate the entire development cascade necessary for handling these new behemoths. That’s what makes a wafer change so different from other transitions.

When we move from one silicon node to another, we typically have to replace a few pieces of equipment in the line, add some more for any new steps, and maybe swap out some parts of an existing tool. Not to minimize those things – they can be critical and expensive things to do.

But when the wafer size changes, you end up throwing everything out unless you’re really lucky (dual-size equipment can help soften the blow, but it still replaces the older single-size unit). It’s not just the fact that the size changes, but, more specifically, the fact that it’s getting bigger. Handlers and clearances and reaction chambers set up for older, smaller wafers will not likely be able to handle the new ones – even if the chemistry hasn’t changed.

That’s not to suggest that a wafer size change is only about making more room; as we saw, the size of the wafers brings new challenges of its own in addition to the simple fact of a new, bigger elephant in the fab.

The details that this involves were brought clearly home to me as I was writing the other piece. A press release came in announcing that Hine Automation had released its new STAR SL-450 automated load locks for 450-mm wafers. One of many, many such details that will need to be sorted to get an entire line outfitted for 450 mm.

Leave a Reply

featured blogs
Feb 27, 2021
New Edge Rate High Speed Connector Set Is Micro, Rugged Years ago, while hiking the Colorado River Trail in Rocky Mountain National Park with my two sons, the older one found a really nice Swiss Army Knife. By “really nice” I mean it was one of those big knives wi...
Feb 26, 2021
OMG! Three 32-bit processor cores each running at 300 MHz, each with its own floating-point unit (FPU), and each with more memory than you than throw a stick at!...
Feb 26, 2021
In the SPECTRE 20.1 base release, we released Spectre® XDP-HB as part of the new Spectre X-RF simulation technology. Spectre XDP-HB uses a highly distributed multi-machine multi-core simulation... [[ Click on the title to access the full blog on the Cadence Community si...

featured video

Silicon-Proven Automotive-Grade DesignWare IP

Sponsored by Synopsys

Get the latest on Synopsys' automotive IP portfolio supporting ISO 26262 functional safety, reliability, and quality management standards, with an available architecture for SoC development and safety management.

Click here for more information

featured paper

Authenticating Remote Automotive Peripherals Using GMSL Tunneling

Sponsored by Maxim Integrated

Authentication can be applied to automotive environments to protect peripheral components from third-party counterfeits. This application note details how to implement automotive authentication with the use of gigabit multimedia serial link (GMSL).

Click here to download the whitepaper

Featured Chalk Talk

TensorFlow to RTL with High-Level Synthesis

Sponsored by Cadence Design Systems

Bridging the gap from the AI and data science world to the RTL and hardware design world can be challenging. High-level synthesis (HLS) can provide a mechanism to get from AI frameworks like TensorFlow into synthesizable RTL, enabling the development of high-performance inference architectures. In this episode of Chalk Talk, Amelia Dalton chats with Dave Apte of Cadence Design Systems about doing AI design with HLS.

More information