editor's blog
Subscribe Now

Towards One Less Antenna?

Right at the beginning of this last year, we took a look at WiSpry; they make a MEMS-based tuning product for dynamically adjusting the antenna matching characteristics dynamically as things change. Things like grabbing the phone in the natural (but wrong) place. Not that that would ever happen; I’m sure such phones would always “just work.” But… just in case…

Such capabilities sound great in theory, but WiSpry recently ran an actual test – one that can’t be accused of being a best-case idealized one either. They purchased two phones and literally opened one of them up, replacing the stock tuner with theirs, and then compared the bandwidths between the two phones. The stock phone had 25 MHz bandwidth; the modified phone? 150 MHz.

At issue specifically here is LTE data, which requires a separate diversity antenna in the phone. It’s one of about six antennas (four for cellular, one for GPS, and one for WiFi/Bluetooth). Something there’s not a lot of room for. If the bandwidth for the voice antenna, for instance, can be broadened to make it effective at data as well, then one antenna can be removed.

The lower frequency bands are the most troublesome because they require larger antennas. According to WiSpry, prior to LTE, the total bandwidth range was from 824 to 2170 MHz; their product can extend the lower range down to 700 MHz. LTE’s top end goes to 2700 MHz; their next product will support the entire 700-2700 MHz range.

You can see more on their release

Leave a Reply

featured blogs
Jun 13, 2024
I've just been introduced to the DuoFlex 4K Dual-Screen Display from HalmaPixel, and now I'm drooling with desire all over my keyboard....

featured paper

Navigating design challenges: block/chip design-stage verification

Sponsored by Siemens Digital Industries Software

Explore the future of IC design with the Calibre Shift left initiative. In this paper, author David Abercrombie reveals how Siemens is changing the game for block/chip design-stage verification by moving Calibre verification and reliability analysis solutions further left in the design flow, including directly inside your P&R tool cockpit. Discover how you can reduce traditional long-loop verification iterations, saving time, improving accuracy, and dramatically boosting productivity.

Click here to read more

featured chalk talk

ROHM Automotive Intelligent Power Device (IPD)
Modern automotive applications require a variety of circuit protections and functions to safeguard against short circuit conditions. In this episode of Chalk Talk, Amelia Dalton and Nick Ikuta from ROHM Semiconductor investigate the details of ROHM’s Automotive Intelligent Power Device, the role that ??adjustable OCP circuit and adjustable OCP mask time plays in this solution, and the benefits that ROHM’s Automotive Intelligent Power Device can bring to your next design.
Feb 1, 2024
18,376 views