editor's blog
Subscribe Now

Being Ahead Puts You Further Ahead

We love the underdog. David slays Goliath. All of that. And we love the myth that hard work and a better idea will always win. When we win, we take credit for deserving the win due to our hard work. (We tend not to credit any accompanying luck or support from others or the existence of infrastructure for any of our success.)

So if that’s the case, then anyone should be able to knock us off our pedestal with yet harder work and a yet better idea, right? Well, not in real life. If any of you have tried to leave the comfort of working for an established company (so tempting, but I just can’t bring myself to use the phrase “the man”…) to challenge those incumbents with a new company or even as an individual, you know what I mean. There are structural barriers built into the system that give a sizeable edge to those currently on the pedestal.

It’s like an energy barrier thing. It’s really hard to get there, but, once you’re there, you don’t have to work as hard to stay there as you did to get there.

When talking to Synopsys about their new multi-source clock technology, they described a situation very much like this evolving in EDA. It used to be that all of the players had a more or less equal shot at getting foundry attention when a new process node comes up. But not so much anymore.

The new requirements of each node have become so demanding that tool development has to start earlier and earlier, and the foundries can really only work with one company to get everything sorted – it’s just too hard to manage multiple partners.

Which means that whoever was the leader at the prior node for a given piece of the toolchain (physical design tends to come first) becomes the lead for the next node. There’s actually a pretty good rationale for this: the companies with the highest market share get more input from customers as to what their requirements are at the next node, and there’s more opportunity for feedback on the tools being developed.

So it makes sense. But it certainly does reward the winner and make it easier for the winner to keep winning in the future, possibly locking out any contenders.

Leave a Reply

featured blogs
Jun 2, 2023
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....
Jun 2, 2023
Explore the importance of big data analytics in the semiconductor manufacturing process, as chip designers pull insights from throughout the silicon lifecycle. The post Demanding Chip Complexity and Manufacturing Requirements Call for Data Analytics appeared first on New Hor...

featured video

The Role of Artificial Intelligence and Machine Learning in Electronic Design

Sponsored by Cadence Design Systems

In this video, we talk to Paul Cunningham, Senior VP and GM at Cadence, about the transformative role of artificial intelligence and machine learning (AI/ML) in electronic designs. We discuss the transformative period we are experiencing with AI and ML and how Cadence is revolutionizing how we design and verify chips through “computationalizing intuition” and building intuitive systems that learn and adapt to the world around them. With human lives at stake, reliability, and safety are paramount.

Learn More

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Power Multiplexing with Discrete Components
Sponsored by Mouser Electronics and Toshiba
Power multiplexing is a vital design requirement for a variety of different applications today. In this episode of Chalk Talk, Amelia Dalton chats with Talayeh Saderi from Toshiba about what kind of power multiplex solution would be the best fit for your next design. They discuss five unique design considerations that we should think about when it comes to power multiplexing and the benefits that high side gate drivers bring to power multiplexing.
Sep 22, 2022
30,607 views