editor's blog
Subscribe Now

Being Ahead Puts You Further Ahead

We love the underdog. David slays Goliath. All of that. And we love the myth that hard work and a better idea will always win. When we win, we take credit for deserving the win due to our hard work. (We tend not to credit any accompanying luck or support from others or the existence of infrastructure for any of our success.)

So if that’s the case, then anyone should be able to knock us off our pedestal with yet harder work and a yet better idea, right? Well, not in real life. If any of you have tried to leave the comfort of working for an established company (so tempting, but I just can’t bring myself to use the phrase “the man”…) to challenge those incumbents with a new company or even as an individual, you know what I mean. There are structural barriers built into the system that give a sizeable edge to those currently on the pedestal.

It’s like an energy barrier thing. It’s really hard to get there, but, once you’re there, you don’t have to work as hard to stay there as you did to get there.

When talking to Synopsys about their new multi-source clock technology, they described a situation very much like this evolving in EDA. It used to be that all of the players had a more or less equal shot at getting foundry attention when a new process node comes up. But not so much anymore.

The new requirements of each node have become so demanding that tool development has to start earlier and earlier, and the foundries can really only work with one company to get everything sorted – it’s just too hard to manage multiple partners.

Which means that whoever was the leader at the prior node for a given piece of the toolchain (physical design tends to come first) becomes the lead for the next node. There’s actually a pretty good rationale for this: the companies with the highest market share get more input from customers as to what their requirements are at the next node, and there’s more opportunity for feedback on the tools being developed.

So it makes sense. But it certainly does reward the winner and make it easier for the winner to keep winning in the future, possibly locking out any contenders.

Leave a Reply

featured blogs
Sep 23, 2020
The great canning lid shortage of 75, the great storm of 87, the great snow of 54, the great freeze of 48... will we one day be talking about the great toilet roll shortage of 2020?...
Sep 23, 2020
CadenceLIVE 2020 India, our first digital conference held on 9-10 September and what an event it was! With 75 technical paper presentations, four keynotes, a virtual exhibition area, and fun... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 22, 2020
I am a child of the 80s.  I grew up when the idea of home computing was very new.  My first experience of any kind of computer was an Apple II that my Dad brought home from work. It was the only computer his company possessed, and every few weeks he would need to cr...
Sep 18, 2020
[From the last episode: We put the various pieces of a memory together to show the whole thing.] Before we finally turn our memory discussion into an AI discussion, let'€™s take on one annoying little detail that I'€™ve referred to a few times, but have kept putting off. ...

Featured Video

DesignWare MIPI C-PHY/D-PHY IP Performance at 24 Gbps

Sponsored by Synopsys

This video features the DesignWare MIPI C-PHY/D-PHY IP interoperating with an image sensor in C-PHY mode up to 3.5 Gsps per trio and D-PHY mode up to 4.5 Gbps per lane, available in FinFET processes for camera and display applications.

More information about Synopsys DesignWare MIPI C-PHY/D-PHY IP

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

Single Pair Ethernet

Sponsored by Mouser Electronics and Harting

Industry 4.0 brings serious demands on communication connections. Designers need to consider interoperability, processing, analytics, EMI reduction, field rates, communication protocols and much more. In this episode of Chalk Talk, Amelia Dalton chats with Piotr Polak and McKenzie Reed of Harting about using single-pair Ethernet for Industry 4.0.

Click here for more information about HARTING T1 Industrial Single Pair Ethernet (SPE) Products