editor's blog
Subscribe Now

Being Ahead Puts You Further Ahead

We love the underdog. David slays Goliath. All of that. And we love the myth that hard work and a better idea will always win. When we win, we take credit for deserving the win due to our hard work. (We tend not to credit any accompanying luck or support from others or the existence of infrastructure for any of our success.)

So if that’s the case, then anyone should be able to knock us off our pedestal with yet harder work and a yet better idea, right? Well, not in real life. If any of you have tried to leave the comfort of working for an established company (so tempting, but I just can’t bring myself to use the phrase “the man”…) to challenge those incumbents with a new company or even as an individual, you know what I mean. There are structural barriers built into the system that give a sizeable edge to those currently on the pedestal.

It’s like an energy barrier thing. It’s really hard to get there, but, once you’re there, you don’t have to work as hard to stay there as you did to get there.

When talking to Synopsys about their new multi-source clock technology, they described a situation very much like this evolving in EDA. It used to be that all of the players had a more or less equal shot at getting foundry attention when a new process node comes up. But not so much anymore.

The new requirements of each node have become so demanding that tool development has to start earlier and earlier, and the foundries can really only work with one company to get everything sorted – it’s just too hard to manage multiple partners.

Which means that whoever was the leader at the prior node for a given piece of the toolchain (physical design tends to come first) becomes the lead for the next node. There’s actually a pretty good rationale for this: the companies with the highest market share get more input from customers as to what their requirements are at the next node, and there’s more opportunity for feedback on the tools being developed.

So it makes sense. But it certainly does reward the winner and make it easier for the winner to keep winning in the future, possibly locking out any contenders.

Leave a Reply

featured blogs
Dec 7, 2023
Building on the success of previous years, the 2024 edition of the DATE (Design, Automation and Test in Europe) conference will once again include the Young People Programme. The largest electronic design automation (EDA) conference in Europe, DATE will be held on 25-27 March...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel Agilex® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel Agilex® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

PIC32CX-BZ2 and WBZ451 Multi-Protocol Wireless MCU Family
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Amelia Dalton and Shishir Malav from Microchip explore the benefits of the PIC32CX-BZ2 and WBZ45 Multi-protocol Wireless MCU Family and how it can make IoT design easier than ever before. They investigate the components included in this multi-protocol wireless MCU family, the details of the software architecture included in this solution, and how you can utilize these MCUs in your next design.
May 4, 2023
26,650 views