editor's blog
Subscribe Now

Coast-to-Coast Nanotechnology

Much of the early work on technology is, of course, done in universities. And schools are increasingly collaborating to be more effective. Cornell and Stanford, in particular, are effecting a bicoastal partnership (OK, to those on the East Coast, Ithaca is probably far enough west – being on the foreign side of the Hudson at a latitude where the coast proper has migrated even further east – to qualify as also being on the West Coast, but bear with me.)

They gave a bit of a presentation recently showing what they’re working on. It’s always interesting to see what’s cooking in these kinds of projects. And some interesting work is underway, although a bit more time was devoted to the more political side of things than I found useful (you know, the, “Check us out, how well we’re working together, and thanks to all our funders and please keep sending money” thing, although it’s not quite worded that way. Sorry… my cynical side is showing a bit…)

So the glimpses of actual work were brief, but there are some cool things happening:

  • They’re working on a nano-particle-based photoresist for EUV use. These particles are 2-3 nm in diameter and are based on metal oxides. The idea is that an organic shell providing “photochemical cross-linking” encases an  inorganic core (the metal oxides, like HfO2 or ZrO2) that resist the etch. They’re able to create nice sharp 20-nm lines at this point. (Ober Group)
  • They’re working on better polymers for organic electronics. One example shows the incorporation of fluorine to create polymers that aren’t damaged by the organic solvents frequently used in manufacturing. This makes them immersible and easier to work with. (Ober Group)
  • They’re working on the integration of LEDs deep into the chip. (Cornell Nanophotonics Group)
  • In a cross between photonics and MEMS (or NEMS), they’re looking at micro-mechanical elements that can be moved by shining photons rather than by some other physical actuator. They call this “optomechanics.” (Cornell Nanophotonics Group)
  • “Transformation optics” is the cryptic name given for such things as “cloaking” – that is, making stuff invisible. This involves nano-particles, and is an area of pursuit here. (Cornell Nanophotonics Group)
  • They’re also working on fabrics that incorporate nano-materials, primarily by coating the native fibers with a material that has some desired property. Part of it is to be resistant to bacteria (which makes sense for hospital clothing, but, put on normal streetwear, would continue, with unabated hubris, man’s valiant attempts to vanquish all bacteria – even as we discover more about their benefits); fabrics with electronic properties are, of course, also in the works. (Textiles Nanotechnology Laboratory)
  • There was also discussion of a “smart bandage” that could communicate remotely, monitor a wound, and administer medicine without the need to rip it up. Imagine someday someone using the by-then idiomatic expression “ripped open that wound” and wondering, “Whatever does that mean anyway? Grampa, did they used to do that in the olden days?”

Of course, before any of this makes it into the real world, they’re also trying to suss out the environmental implications of the particles they’re creating. This stuff doesn’t exist in nature, so there are presumably no mechanisms for dealing with them in living organisms – which could be good or bad. Which is why we need to look into it.

 

Leave a Reply

featured blogs
Feb 24, 2021
mmWave applications are all the rage. Why? Simply put, the 5G tidal wave is coming. Also, ADAS systems use 24 GHz for SRR applications and 77 GHz for LRR applications. Obviously, the world needs mmWave tech! Traditional mmWave technology spans the frequency range of 30 –...
Feb 24, 2021
Crowbits are programmable, LEGO-compatible, magnetically-coupled electronic blocks to interest kids in electronics and computing and facilitate their STEM activities....
Feb 24, 2021
With DVCon 2021 on the horizon we share a primer on our datapath verification technology HECTOR, exploring its impact on machine learning & AI chip design. The post Why Datapath Validation Is Important'€”and How HECTOR Technology Can Help appeared first on From Silico...
Feb 24, 2021
When I worked for Cadence back in the early oughts, we developed a layout database called OpenAccess, usually abbreviated to OA. It had actually been designed from the ground up to be the native... [[ Click on the title to access the full blog on the Cadence Community site. ...

featured video

Designing your own Processor with ASIP Designer

Sponsored by Synopsys

Designing your own processor is time-consuming and resource intensive, and it used to be limited to a few experts. But Synopsys’ ASIP Designer tool allows you to design your own specialized processor within your deadline and budget. Watch this video to learn more.

Click here for more information

featured paper

Using the DS28E18, The Basics

Sponsored by Maxim Integrated

This application note goes over the basics of using the DS28E18 1-Wire® to I2C/SPI Bridge with Command Sequencer and discusses the steps to get it up and running quickly. It then shows how to use the device with two different devices. The first device is an I2C humidity/temperature sensor and the second one is an SPI temperature sensor device. It concludes with detailed logs of each command.

Click here to download the whitepaper

Featured Chalk Talk

Accelerate the Integration of Power Conversion with microBUCK® and microBRICK™

Sponsored by Mouser Electronics and Vishay

In the world of power conversion, multi-chip packaging, thermal performance, and power density can make all of the difference in the success of your next design. In this episode of Chalk Talk, Amelia Dalton chats with Raymond Jiang about the trends and challenges in power delivery and how you can leverage the unique combination of discrete MOSFET design, IC expertise, and packaging capability of Vishay’s microBRICK™and microBUCK® integrated voltage regulators.

Click here for more information about Vishay microBUCK® and microBRICK™ DC/DC Regulators