editor's blog
Subscribe Now

More Efficient Vectors

In the wake of the UCIS announcement at DAC (which we’ll cover separately later), I sat down with some of Mentor’s functional verification folks to get an update. Coverage was one of the items on their agenda as part of addressing metric-driven verification.

They talk in terms of changing the engineering mindset when it comes to evaluating verification tools. Right now engineers tend to think in terms of “cycles/second”: how fast can you blaze through these vectors? Mentor is trying to change that thought process to “coverage/cycle”: it’s ok to take longer per cycle (OK, actually, they didn’t explicitly say that – according to Romain Berg it is probably a bit dodgy territory from a marketing standpoint  – and I don’t know whether they’re solution is any slower on a per-cycle basis – but I’m inferring here…) as long as you get coverage faster. In other words, maybe one tool can zip through a bazillion vectors in three hours, but it’s better to have a tool that only needs a half-bazillion vectors and completes in two hours (slower on a per-vector basis, but faster overall completion).

Part of this is handled by their InFact “intelligent testbench.” They try to solve two problems with it, as I see it. First, there are hard-to-reach states in any design; the tool builds a graph of the design for use in identifying trajectories. From that, they should be able to reach any reachable state with the fewest vectors possible. Which is fine when testing just that one state.

But the second thing they do is what would appear to be their own variation of the “traveling salesman” problem. How do you traverse the graph to get to all the nodes without repeating any path? (The canonical traveling salesman problem is about not repeating any node and ending back where you started.) The idea is to get full coverage with as few vectors as possible. This gets specifically to the “coverage/cycle” metric.

Which reinforces the old truth that simply having and rewarding metrics doesn’t necessarily help things. It’s too easy to have the wrong metrics – which will be attained and for which rewards will be paid – and not improve life. Because they’re the wrong metrics.

Perhaps MDV should be modified to UMDV: Useful-Metric-Driven Verification. Of course, then we’ll get to watch as companies battle over which metrics are useful. But that could make for entertaining viewing too…

Leave a Reply

featured blogs
Jun 12, 2025
We truly do live in a world that would have been considered to be a far-flung science fiction future only a few short decades ago...

featured paper

Shift Left with Calibre Pattern Matching: Trust in design practices but verify early and frequently

Sponsored by Siemens Digital Industries Software

As integrated circuit (IC) designs become increasingly complex, early-stage verification is crucial to ensure productivity and quality in design processes. The "shift left" verification approach, enabled by Siemens’ Calibre nmPlatform, helps IC design teams to identify and resolve critical issues much earlier in the design cycle.

Click to read more

featured chalk talk

High Power Charging Inlets
All major truck and bus OEMs will be launching electric vehicle platforms within the next few years and in order to keep pace with on-highway and off-highway EV innovation, our charging inlets must also provide the voltage, current and charging requirements needed for these vehicles. In this episode of Chalk Talk, Amelia Dalton and Drew Reetz from TE Connectivity investigate charging inlet design considerations for the next generation of industrial and commercial transportation, the differences between AC only charging and fast charge and high power charging inlets, and the benefits that TE Connectivity’s ICT high power charging inlets bring to these kinds of designs.
Aug 30, 2024
36,208 views