editor's blog
Subscribe Now

More Efficient Vectors

In the wake of the UCIS announcement at DAC (which we’ll cover separately later), I sat down with some of Mentor’s functional verification folks to get an update. Coverage was one of the items on their agenda as part of addressing metric-driven verification.

They talk in terms of changing the engineering mindset when it comes to evaluating verification tools. Right now engineers tend to think in terms of “cycles/second”: how fast can you blaze through these vectors? Mentor is trying to change that thought process to “coverage/cycle”: it’s ok to take longer per cycle (OK, actually, they didn’t explicitly say that – probably a bit dodgy territory from a marketing standpoint – and I don’t know whether they’re solution is any slower on a per-cycle basis – but I’m inferring here…) as long as you get coverage faster. In other words, maybe one tool can zip through a bazillion vectors in three hours, but it’s better to have a tool that only needs a half-bazillion vectors and completes in two hours (slower on a per-vector basis, but faster overall completion).

Part of this is handled by their InFact “intelligent testbench.” They try to solve two problems with it, as I see it. First, there are hard-to-reach states in any design; the tool builds a graph of the design for use in identifying trajectories. From that, they should be able to reach any reachable state with the fewest vectors possible. Which is fine when testing just that one state.

But the second thing they do is what would appear to be their own variation of the “traveling salesman” problem. How do you traverse the graph to get to all the nodes without repeating any path? (The canonical traveling salesman problem is about not repeating any node and ending back where you started.) The idea is to get full coverage with as few vectors as possible. This gets specifically to the “coverage/cycle” metric.

Which reinforces the old truth that simply having and rewarding metrics doesn’t necessarily help things. It’s too easy to have the wrong metrics – which will be attained and for which rewards will be paid – and not improve life. Because they’re the wrong metrics.

Perhaps MDV should be modified to UMDV: Useful-Metric-Driven Verification. Of course, then we’ll get to watch as companies battle over which metrics are useful. But that could make for entertaining viewing too…

Leave a Reply

featured blogs
Jan 27, 2021
Why is my poor old noggin filled with thoughts of roaming with my friends through a post-apocalyptic dystopian metropolis ? Well, I'€™m glad you asked......
Jan 27, 2021
Here at the Cadence Academic Network, it is always important to highlight the great work being done by professors, and academia as a whole. Now that AWR software solutions is a part of Cadence, we... [[ Click on the title to access the full blog on the Cadence Community site...
Jan 27, 2021
Super-size. Add-on. Extra. More. We see terms like these a lot, whether at the drive through or shopping online. There'€™s always something else you can add to your order or put in your cart '€“ and usually at an additional cost. Fairly certain at this point most of us kn...
Jan 27, 2021
Cloud computing security starts at hyperscale data centers; learn how embedded IDE modules protect data across interfaces including PCIe 5.0 and CXL 2.0. The post Keeping Hyperscale Data Centers Safe from Security Threats appeared first on From Silicon To Software....

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

Featured Chalk Talk

Maxim's First Secure Micro with ChipDNA PUF Technology

Sponsored by Mouser Electronics and Maxim Integrated

Most applications today demand security, and that starts with your microcontroller. In order to get a truly secure MCU, you need a root of trust such as a physically unclonable function (PUF). In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis of Maxim Integrated about how the Maxim MAX32520 MCU with PUF can secure your next design.

Click here for more info about Amphenol RF 5G Wireless Connectors