editor's blog
Subscribe Now

More Efficient Vectors

In the wake of the UCIS announcement at DAC (which we’ll cover separately later), I sat down with some of Mentor’s functional verification folks to get an update. Coverage was one of the items on their agenda as part of addressing metric-driven verification.

They talk in terms of changing the engineering mindset when it comes to evaluating verification tools. Right now engineers tend to think in terms of “cycles/second”: how fast can you blaze through these vectors? Mentor is trying to change that thought process to “coverage/cycle”: it’s ok to take longer per cycle (OK, actually, they didn’t explicitly say that – probably a bit dodgy territory from a marketing standpoint – and I don’t know whether they’re solution is any slower on a per-cycle basis – but I’m inferring here…) as long as you get coverage faster. In other words, maybe one tool can zip through a bazillion vectors in three hours, but it’s better to have a tool that only needs a half-bazillion vectors and completes in two hours (slower on a per-vector basis, but faster overall completion).

Part of this is handled by their InFact “intelligent testbench.” They try to solve two problems with it, as I see it. First, there are hard-to-reach states in any design; the tool builds a graph of the design for use in identifying trajectories. From that, they should be able to reach any reachable state with the fewest vectors possible. Which is fine when testing just that one state.

But the second thing they do is what would appear to be their own variation of the “traveling salesman” problem. How do you traverse the graph to get to all the nodes without repeating any path? (The canonical traveling salesman problem is about not repeating any node and ending back where you started.) The idea is to get full coverage with as few vectors as possible. This gets specifically to the “coverage/cycle” metric.

Which reinforces the old truth that simply having and rewarding metrics doesn’t necessarily help things. It’s too easy to have the wrong metrics – which will be attained and for which rewards will be paid – and not improve life. Because they’re the wrong metrics.

Perhaps MDV should be modified to UMDV: Useful-Metric-Driven Verification. Of course, then we’ll get to watch as companies battle over which metrics are useful. But that could make for entertaining viewing too…

Leave a Reply

featured blogs
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...
Sep 25, 2020
Normally, in May, I'd have been off to Unterschleißheim, a suburb of Munich where historically we've held what used to be called CDNLive EMEA. We renamed this CadenceLIVE Europe and... [[ Click on the title to access the full blog on the Cadence Community site...

Featured Video

Product Update: Synopsys and SK hynix Discuss HBM2E at 3.6Gbps

Sponsored by Synopsys

In this video interview hear from Keith Kim, Team Leader of DRAM Technical Marketing at SK hynix, discussing the wide adoption of HBM2E at 3.6Gbps and successful collaboration with Synopsys to validate the DesignWare HBM2E IP at the maximum speed.

Click here for more information about DesignWare DDR IP Solutions

Featured Paper

Helping physicians achieve faster, more accurate patient diagnoses with molecular test technology

Sponsored by Texas Instruments

Point-of-care molecular diagnostics (PoC) help physicians achieve faster, more accurate patient diagnoses and treatment decisions. This article breaks down how molecular test technology works and the building blocks for a PoC molecular diagnostics analyzer sensor front end system.

Read the Article

Featured Chalk Talk

Electrification of the Vehicle

Sponsored by Mouser Electronics and KEMET

The automotive technology revolution has arrived, and with it - new demands on components for automotive applications. Electric vehicles, ADAS, connected cars, and autonomous driving put fresh demands on our electrical and electronic parts. In this episode of Chalk Talk, Amelia Dalton chats with Nick Stephen of KEMET about components for the next generation of automobiles.

More information about KEMET Electronics ALA7D & ALA8D Snap-In Capacitors