editor's blog
Subscribe Now

More Efficient Vectors

In the wake of the UCIS announcement at DAC (which we’ll cover separately later), I sat down with some of Mentor’s functional verification folks to get an update. Coverage was one of the items on their agenda as part of addressing metric-driven verification.

They talk in terms of changing the engineering mindset when it comes to evaluating verification tools. Right now engineers tend to think in terms of “cycles/second”: how fast can you blaze through these vectors? Mentor is trying to change that thought process to “coverage/cycle”: it’s ok to take longer per cycle (OK, actually, they didn’t explicitly say that – according to Romain Berg it is probably a bit dodgy territory from a marketing standpoint  – and I don’t know whether they’re solution is any slower on a per-cycle basis – but I’m inferring here…) as long as you get coverage faster. In other words, maybe one tool can zip through a bazillion vectors in three hours, but it’s better to have a tool that only needs a half-bazillion vectors and completes in two hours (slower on a per-vector basis, but faster overall completion).

Part of this is handled by their InFact “intelligent testbench.” They try to solve two problems with it, as I see it. First, there are hard-to-reach states in any design; the tool builds a graph of the design for use in identifying trajectories. From that, they should be able to reach any reachable state with the fewest vectors possible. Which is fine when testing just that one state.

But the second thing they do is what would appear to be their own variation of the “traveling salesman” problem. How do you traverse the graph to get to all the nodes without repeating any path? (The canonical traveling salesman problem is about not repeating any node and ending back where you started.) The idea is to get full coverage with as few vectors as possible. This gets specifically to the “coverage/cycle” metric.

Which reinforces the old truth that simply having and rewarding metrics doesn’t necessarily help things. It’s too easy to have the wrong metrics – which will be attained and for which rewards will be paid – and not improve life. Because they’re the wrong metrics.

Perhaps MDV should be modified to UMDV: Useful-Metric-Driven Verification. Of course, then we’ll get to watch as companies battle over which metrics are useful. But that could make for entertaining viewing too…

Leave a Reply

featured blogs
Oct 28, 2021
Spectre 21.1 ISR2 and Virtuoso IC6.1.8 ISR21 introduce the new Voltus TM -XFi Custom Power Integrity Solution, a new transistor-level electromigration and IR drop (EMIR) solution that provides a... [[ Click on the title to access the full blog on the Cadence Community site. ...
Oct 27, 2021
ASIC hardware verification is a complex process; explore key challenges and bug hunting, debug, and SoC verification solutions to satisfy sign-off requirements. The post The Quest for Bugs: The Key Challenges appeared first on From Silicon To Software....
Oct 20, 2021
I've seen a lot of things in my time, but I don't think I was ready to see a robot that can walk, fly, ride a skateboard, and balance on a slackline....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

What are V³Link SerDes?

Sponsored by Texas Instruments

V³Link ICs are ultra-low latency SerDes that aggregate video, clock, control and GPIO data into a single-wire bidirectional bridge between industry-standard interfaces. Vision-based designs can use V³Link devices to achieve higher resolution, extend cable reach up to 15 meters and reduce system size, weight and power. Learn about the basics of V³Link technology and explore typical applications for V³Link in this training video.

Click here for more information

featured paper

Meet the risk-buster: How functional safety helps keep you safe

Sponsored by Texas Instruments

Whether it’s preventing systematic failures or anticipating and mitigating future risk, learn how functional safety works behind the scenes to help keep you and your electronics safe in Texas Instrument's latest company blog post.

Click to read more

featured chalk talk

Thunderbolt Technology Overview

Sponsored by Mouser Electronics and Intel

Thunderbolt is the closest thing we’ve got to universal interconnect between a wide variety of devices and systems. With a universal USB-C connector, it can do video, power, data communication - all at scalable rates with smart adjustment. In this episode of Chalk Talk, Amelia Dalton chats with Sandeep Vedanthi of Intel about the latest in Thunderbolt technology - Thunderbolt 4, which brings a number of benefits over previous versions.

Click here for more information about Intel 8000 series Thunderbolt™ 4 Controllers