editor's blog
Subscribe Now

Photonics on Different Silicon

The use of photons as signal carriers has historically gone towards long-distance transport, either over the air (feels like waves more than photons) or within fiber. But the distances of interest have dropped dramatically, to the point where there are discussions of using silicon photonics even for on-chip signaling.

In a conversation at Semicon West with imec’s Ludo Deferm, we discussed their current work. At this point, and for at least 10 years out, he doesn’t see CMOS and photonics co-existing on the same wafer. The bottleneck right now isn’t on-chip; it’s chip-to-chip. 40-60 Gb/s internally is fine for now. Which suggests the use of photonics in a separate chip in, for example, a 3D-IC stack or on an interposer: one for routing signals between the chips in the stack.

That photonic chip would be made with the same equipment as a CMOS chip – a specific goal of the imec work in commercializing silicon photonics, but it starts with a different wafer: SOI, with a thinner silicon layer than you would have in a typical CMOS wafer, and with that thickness (or thinness) tightly controlled to reduce optical losses.

You can read more about imec’s progress in their recent announcement.

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

How NV5, NVIDIA, and Cadence Collaboration Optimizes Data Center Efficiency, Performance, and Reliability

Sponsored by Cadence Design Systems

Deploying data centers with AI high-density workloads and ensuring they are capable for anticipated power trends requires insight. Creating a digital twin using the Cadence Reality Digital Twin Platform helped plan the deployment of current workloads and future-proof the investment. Learn about the collaboration between NV5, NVIDIA, and Cadence to optimize data center efficiency, performance, and reliability. 

Click here for more information about Cadence Data Center Solutions

featured chalk talk

GaN Solutions Featuring EcoGaN™ and Nano Pulse Control
In this episode of Chalk Talk, Amelia Dalton and Kengo Ohmori from ROHM Semiconductor examine the details and benefits of ROHM Semiconductor’s new lineup of EcoGaN™ Power Stage ICs that can reduce the component count by 99% and the power loss of your next design by 55%. They also investigate ROHM’s Ultra-High-Speed Control IC Technology called Nano Pulse Control that maximizes the performance of GaN devices.
Oct 9, 2023
35,444 views