editor's blog
Subscribe Now

Constraining Big Designs

It’s been a while since we took a look at timing constraints (and, in particular, their exceptions). In fact, the exceptions are where things often go wrong. Yes, a constraint may be placed, for example, on the wrong phase of the clock. Presumably, there are plenty of ways to get actual constraints wrong. But exceptions, well, they’re not quite as intuitive.

–          You might think a particular path should be an exception – when, in fact, it matters.

–          You might place an exception on a path that would have been ignored already by the tool for other reasons.

–          You might place several exceptions without realizing that they end up being redundant.

These last couple are particularly pernicious in that they clutter the design with unneeded constraints, slowing things down.

And performance is already an issue what with the size of today’s designs.

This is what Ausdia has set out to address with their new Timevision constraint automation tool. They say that they can generate and verify constraints for an entire SoC either at the RTL level (preferably) or at the gate level (for that unfortunate ECO).

The goal is to improve static timing analysis (STA) by improving the quality of constraints, and doing that in an automatic fashion. But they actually incorporate an STA engine into their own tool, so performance is critical for them as well. They claim faster speed than current solutions based on a couple of angles:

–          They use multi-threading, which gets them close to linear improvement. This brings them 5-15x performance (presumably with up to 16 cores).

–          They also talk about other optimizations… well, they talk about the fact that they exist, but… they don’t actually talk about them because they’re secret. These get them to the 50-100x performance improvement range.

They claim to have had success on designs with as many as 150 million instances and over 5000 clocks, on technologies from 90 nm down to 28 nm.

You can find out more in their release.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

How to Fast-Charge Your Supercapacitor

Sponsored by Analog Devices

Supercapacitors (or ultracapacitors) are suited for short charge and discharge cycles. They require high currents for fast charge as well as a high voltage with a high number in series as shown in two usage cases: an automatic pallet shuttle and a fail-safe backup system. In these and many other cases, the fast charge is provided by a flexible, high-efficiency, high-voltage, and high-current charger based on a synchronous, step-down, supercapacitor charger controller.

Click to read more

featured chalk talk

TE's Dynamic Series for Robotics

Sponsored by Mouser Electronics and TE Connectivity

If you are designing a robot, a drive system, or any electromechanical system, the dynamic series of connectors from TE Connectivity might be a great solution for your next design. In this episode of Chalk Talk, Amelia Dalton chats with Jennifer Love from TE Connectivity about the design requirements common in robotic applications and why this new flexible connector with its innovative three point contact design, audible locking system, and dedicated tooling make it a great solution for all kinds of robotic designs.

Click here for more information about TE Connectivity Dynamic D8000 Pluggable Connectors