editor's blog
Subscribe Now

Constraining Big Designs

It’s been a while since we took a look at timing constraints (and, in particular, their exceptions). In fact, the exceptions are where things often go wrong. Yes, a constraint may be placed, for example, on the wrong phase of the clock. Presumably, there are plenty of ways to get actual constraints wrong. But exceptions, well, they’re not quite as intuitive.

–          You might think a particular path should be an exception – when, in fact, it matters.

–          You might place an exception on a path that would have been ignored already by the tool for other reasons.

–          You might place several exceptions without realizing that they end up being redundant.

These last couple are particularly pernicious in that they clutter the design with unneeded constraints, slowing things down.

And performance is already an issue what with the size of today’s designs.

This is what Ausdia has set out to address with their new Timevision constraint automation tool. They say that they can generate and verify constraints for an entire SoC either at the RTL level (preferably) or at the gate level (for that unfortunate ECO).

The goal is to improve static timing analysis (STA) by improving the quality of constraints, and doing that in an automatic fashion. But they actually incorporate an STA engine into their own tool, so performance is critical for them as well. They claim faster speed than current solutions based on a couple of angles:

–          They use multi-threading, which gets them close to linear improvement. This brings them 5-15x performance (presumably with up to 16 cores).

–          They also talk about other optimizations… well, they talk about the fact that they exist, but… they don’t actually talk about them because they’re secret. These get them to the 50-100x performance improvement range.

They claim to have had success on designs with as many as 150 million instances and over 5000 clocks, on technologies from 90 nm down to 28 nm.

You can find out more in their release.

Leave a Reply

featured blogs
Dec 1, 2023
Why is Design for Testability (DFT) crucial for VLSI (Very Large Scale Integration) design? Keeping testability in mind when developing a chip makes it simpler to find structural flaws in the chip and make necessary design corrections before the product is shipped to users. T...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured webinar

Rapid Learning: Purpose-Built MCU Software Tools for Data-Driven Embedded IoT Systems

Sponsored by ITTIA

Are you developing an MCU application that captures data of all kinds (metrics, events, logs, traces, etc.)? Are you ready to reduce the difficulties and complications involved in developing an event- and data-centric embedded system? This webinar will quickly introduce you to excellent MCU-specific software options for developing your next-generation data-driven IoT systems. You will also learn how to recognize and overcome data management obstacles. Register today as seats are limited!

Register Now!

featured chalk talk

OPTIGA™ TPM SLB 9672 and SLB 9673 RPI Evaluation Boards
Sponsored by Mouser Electronics and Infineon
Security is a critical design concern for most electronic designs today, but finding the right security solution for your next design can be a complicated and time-consuming process. In this episode of Chalk Talk, Amelia Dalton and Andreas Fuchs from Infineon investigate how Infineon’s OPTIGA trusted platform module can not only help solve your security design concerns but also speed up your design process as well.
Jun 26, 2023
19,375 views