editor's blog
Subscribe Now

A Buttable X-Ray Detector

Most image sensors receive light that has passed through a lens of some sort. This means that a large area can be photographed, for example, and sensed on a chip that is extremely small by comparison with the scene itself.

Not so with medical X-ray imaging. The target sensor gets a full-sized image. Not so hard for dental work, but more challenging for mammography or other full- or partial-body scans.

It’s typically hard, therefore, to provide a solid-state target that can provide seamless coverage. No matter how large they’ve been, they’ve had pixel addressing circuitry on two sides, meaning that you can’t tile them together. (At least not without having “blind stripes” where the decode logic blocks meet up…)

TowerJazz and Tanner worked together with the UK Science and Technology Facility Council’s Rutherford Appleton Labs to develop a unique decoding scheme that allowed them to restrict themselves to only one edge for the circuitry, allowing pixels all the way up to the other three edges. That means that you can tile them in any 2xN configuration.

With each sensor being basically the size of a 200-mm wafer (6.7 Mpixels), they can handle mammography applications with a 2×2 arrangement; longer targets are possible for other applications.

As to how they did the decoding? Yeah… they’re being coy about that. It seems to be largely an analog approach, which is where Tanner contributed to the process. But more details weren’t forthcoming…

You can read more in their release.

EDAS0088-STFCimagesensor_550px.jpg

Leave a Reply

featured blogs
Sep 5, 2024
I just discovered why my wife sees our green watering can as being blue (and why she says I see our blue watering can as being green)...

featured paper

A game-changer for IP designers: design-stage verification

Sponsored by Siemens Digital Industries Software

In this new technical paper, you’ll gain valuable insights into how, by moving physical verification earlier in the IP design flow, you can locate and correct design errors sooner, reducing costs and getting complex designs to market faster. Dive into the challenges of hard, soft and custom IP creation, and learn how to run targeted, real-time or on-demand physical verification with precision, earlier in the layout process.

Read more

featured chalk talk

Dependable Power Distribution: Supporting Fail Operational and Highly Available Systems
Sponsored by Infineon
Megatrends in automotive designs have heavily influenced the requirements needed for vehicle architectures and power distribution systems. In this episode of Chalk Talk, Amelia Dalton and Robert Pizuti from Infineon investigate the trends and new use cases required for dependable power systems and how Infineon is advancing innovation in automotive designs with their EiceDRIVER and PROFET devices.
Dec 7, 2023
38,869 views