editor's blog
Subscribe Now

A Buttable X-Ray Detector

Most image sensors receive light that has passed through a lens of some sort. This means that a large area can be photographed, for example, and sensed on a chip that is extremely small by comparison with the scene itself.

Not so with medical X-ray imaging. The target sensor gets a full-sized image. Not so hard for dental work, but more challenging for mammography or other full- or partial-body scans.

It’s typically hard, therefore, to provide a solid-state target that can provide seamless coverage. No matter how large they’ve been, they’ve had pixel addressing circuitry on two sides, meaning that you can’t tile them together. (At least not without having “blind stripes” where the decode logic blocks meet up…)

TowerJazz and Tanner worked together with the UK Science and Technology Facility Council’s Rutherford Appleton Labs to develop a unique decoding scheme that allowed them to restrict themselves to only one edge for the circuitry, allowing pixels all the way up to the other three edges. That means that you can tile them in any 2xN configuration.

With each sensor being basically the size of a 200-mm wafer (6.7 Mpixels), they can handle mammography applications with a 2×2 arrangement; longer targets are possible for other applications.

As to how they did the decoding? Yeah… they’re being coy about that. It seems to be largely an analog approach, which is where Tanner contributed to the process. But more details weren’t forthcoming…

You can read more in their release.

EDAS0088-STFCimagesensor_550px.jpg

Leave a Reply

featured blogs
May 7, 2021
In one of our Knowledge Booster Blogs a few months ago we introduced you to some tips and tricks for the optimal use of Virtuoso ADE Product Suite with our analog IC design videos . W e hope you... [[ Click on the title to access the full blog on the Cadence Community site. ...
May 7, 2021
Enough of the letter “P” already. Message recieved. In any case, modeling and simulating next-gen 224 Gbps signal channels poses many challenges. Design engineers must optimize the entire signal path, not just a specific component. The signal path includes transce...
May 6, 2021
Learn how correct-by-construction coding enables a more productive chip design process, as new code review tools address bugs early in the design process. The post Find Bugs Earlier Via On-the-Fly Code Checking for Productive Chip Design and Verification appeared first on Fr...
May 4, 2021
What a difference a year can make! Oh, we're not referring to that virus that… The post Realize Live + U2U: Side by Side appeared first on Design with Calibre....

featured video

Introduction to EMI

Sponsored by Texas Instruments

Conducted versus radiated EMI. CISPR-25 and CISPR-32 standards. High-frequency or low-frequency emissions. Designing a system to reduce EMI can be overwhelming, but it doesn’t have to be. Watch this video to get an overview of EMI causes, standards, and mitigation techniques.

Click here for more information

featured paper

From Chips to Ships, Solve Them All With HFSS

Sponsored by Ansys

There are virtually no limits to the design challenges that can be solved with Ansys HFSS and the new HFSS Mesh Fusion technology! Check out this blog to know what the latest innovation in HFSS 2021 can do for you.

Click here to read the blog post

featured chalk talk

Building Your IoT Toolbox

Sponsored by Mouser Electronics and Digi

December 17, 2020 - IoT design is a complex task, involving numerous disciplines and domains - including embedded design, software, networking, security, manufacturability, and the list goes on and on. Mastering all those moving parts is a daunting challenge for design teams. In this episode of Chalk Talk, Amelia Dalton chats with Andy Reiter of Digi International about development, deployment, manufacturing, and management tools for IoT development that could help get your next design out the door.

Click here for more information about DIGI XBee® Tools