editor's blog
Subscribe Now

Analog Standard Cells

The annual DAC CEDA luncheon this year featured Stanford EE Dept. chair Mark Horowitz in a discussion of analog abstraction. Which has always been a tough sell. Which they understand, which is why, at this point, there’s no selling.

Digital productivity has been supported by the existence of standard cells that can be bolted together into a circuit. No more transistor-level design. While that sounds nice for analog, it’s never passed muster because, well, analog is so complex. There are no standard parameters that cross all analog circuits, and nth-order effects matter – heck, they’re sometimes even exploited. To date, no standard-cell methodology has gotten anywhere close to credible with designers.

It’s probably also arguable that there are some job security concerns amongst the analog designer crowd, generally considered an elite and impenetrable bunch. So any practical abstraction approach will realistically have to pass technical muster and then either improve designer productivity without rendering designers redundant or deliver such overwhelming results that management buys in with or without a push from the engineers themselves.

And there are two key roles that such a cell can take on. The first is as a model for validation; the second, more ambitious and elusive, is for synthesis. Yeah, analog synthesis. Be very afraid?

The approach taken in Stanford’s Circuitbook project (at circuitbook.stanford.edu, although, at this point, it’s mostly a skeleton with little actual data), focuses first on validation; once that has been nailed, then they can tackle synthesis (which Prof. Horowitz thinks is probably solvable). They make a distinction between model and implementation, with interfaces forming the heart of the model. The interface itself becomes the published “standard,” with the circuit design for a specific cell implementing that interface.

Of course, many analog functions are highly non-linear, and the approach for the interfaces is to describe things in a linear fashion. But Prof. Horowitz noted that most cells have at least one view or domain in which they are almost linear, even if it’s not voltage over time. For example, a phase-locked loop is non-linear from a voltage standpoint, but if you consider the phase in and phase out, those have a roughly linear relationship.

This alternate view of a linear relationship only applies to the process of validating a model and correlating it with actual silicon. Once you start hooking the models together for simulation, then you operate in the voltage-vs.-time domain so that all of the models can work together.

The other frequent gotcha these days is digitally-controlled analog circuits. This typically means that digital signals change some parameter(s) of the analog circuit. The way they’re approaching this is that a separate analog model is needed for each digital setting. So, for example, a three-bit control interface will result in eight models (assuming no degenerate settings).

You also have to create a port for every physical attribute that matters. If temperature is a consideration, then you need to have a port for it. If the phase of the moon matters, you need a port for it.

This is very much a work in progress, and it’s not clear when it will be available for general use – or even whether it will get traction. But it’s something to keep an eye on…

Leave a Reply

featured blogs
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 20, 2021
As it seems to be becoming a (bad) habit, This Week in CFD is presented here as Last Week in CFD. But that doesn't make the news any less relevant. Great article on wind tunnels because they go... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Silicon Lifecycle Management Paradigm Shift

Sponsored by Synopsys

An end-to-end platform solution, Silicon Lifecycle Management leverages existing, mature, world-class technologies within Synopsys. This exciting new concept will revolutionize the semiconductor industry and how we manage silicon design. For the first time, designers can look inside silicon chip devices from the moment the design is created to the point at which they end their life.

Click here to learn more about Silicon Lifecycle Management

featured paper

What is a smart DAC?

Sponsored by Texas Instruments

See how to add simple logic and programmability to analog circuits, without writing, maintaining and qualifying software. These devices have built-in non-volatile memory and are factory programmable. They also include programmable state machines, PWM generators and custom waveform generators – all in a single device. This means that adding simple intelligence to your analog circuits no longer requires a microcontroller.

Click to read more

featured chalk talk

Simplifying Brushless Motor Controls with Toshiba Motor Control Solutions

Sponsored by Mouser Electronics and Toshiba

Making sure your motor control design is efficient and ready for primetime can be a complicated process. In this episode of Chalk Talk, Amelia Dalton chats with Alan Li from Toshiba about the basics of brushless motor control, more advanced variables including lead angle control and intelligent phase control and most importantly, how you can simplify your next brushless motor control design.

Click here for more information about Toshiba Brushless Motor Driver ICs