editor's blog
Subscribe Now

Assembling an SoC Architecture

Planning an SoC has never been easy. As chip design has moved from mostly-from-scratch design to mostly-IP (even if internal), and as the size of the chip has grown, architectural decisions have to be made with loose back-of-the-envelope estimates, since much of the detailed implementation decisions aren’t made at that point. IP in particular can vary wildly depending on the source. And, while this sounds somewhat less likely, given the strong connections between design houses and foundries, you might even want to have a bake-off between foundries if that is part of the decision process.

A small company called Chip Path launched a site at DAC that allows architects to use a browser-based architecture tool to describe the intended function of a chip, and then map that to different foundries or IP blocks or fundamental platform architectures – SoC, FPGA, etc.

While this probably sounds obvious in the abstract, the details of doing this sort of high-level advanced planning have always been difficult. None of the pieces were originally designed to talk to each other – two identically-functioned (at a high level) IP blocks may have incompatible interfaces, for example. They’ve got what they call a “connection network” – a collection of items that have been designed to interconnect easily. These address the overall SoC interconnect scheme (NoC or fabric); streaming connections; interrupts; memory maps; and reset/control, clock, and power networks.

They have created a number of different “portals” that reflect the different things you might be looking for. Some are multi-vendor, for evaluating different foundries; others are “branded”. The SoC estimation, IP search, and FPGA fitting tools are free; they also sell other tools.

As you might suspect, the company shares roots with ChipEstimate, now owned by Cadence. But today’s problem is more complex than that of ChipEstimate back in the day. At the same time, the metaphor they use for explaining what they’re doing harkens back to something more traditional: building a car. They’re treating an SoC as a similar beast, with a list of components to choose from. This more than anything else reflects the role of IP today; such a component-oriented approach would have made much less sense in the past, when so much had to be created from scratch.

You can find out more in their release

Leave a Reply

featured blogs
Sep 23, 2020
CadenceLIVE 2020 India, our first digital conference held on 9-10 September and what an event it was! With 75 technical paper presentations, four keynotes, a virtual exhibition area, and fun... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 22, 2020
If you are at all interested in digital signal processing (DSP), then the DSP Online Conference is the place to '€œsee and be seen'€ -- register now before all the good seats are snapped up!...
Sep 22, 2020
I am a child of the 80s.  I grew up when the idea of home computing was very new.  My first experience of any kind of computer was an Apple II that my Dad brought home from work. It was the only computer his company possessed, and every few weeks he would need to cr...
Sep 18, 2020
[From the last episode: We put the various pieces of a memory together to show the whole thing.] Before we finally turn our memory discussion into an AI discussion, let'€™s take on one annoying little detail that I'€™ve referred to a few times, but have kept putting off. ...

Featured Video

AI SoC Chats: IP for In-Memory / Near-Memory Compute

Sponsored by Synopsys

AI chipsets are data hungry and have high compute intensity, leading to potential power consumption issues. Join Synopsys Fellow Jamil Kawa to learn how in-memory or near-memory compute, 3D stacking, and other innovations can address the challenges of making chips think like the human brain.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

Designing highly efficient, powerful and fast EV charging stations

Sponsored by Texas Instruments

Scaling the necessary power for fast EV charging stations can be challenging. One solution is to use modular power converters stacked in parallel.

Learn More in our technical article

Featured Chalk Talk

Automotive MOSFET for the Transportation Market

Sponsored by Mouser Electronics and Infineon

MOSFETS are critical in automotive applications, where long-term reliability is paramount. But, do we really understand the failure rates and mechanisms in the devices we design in? In this episode of Chalk Talk, Amelia Dalton sits down with Jeff Darrow of Infineon to discuss the role of MOSFETS in transportation, solder inspection, qualification.

Click here for more information about Infineon Technologies OptiMOS™ 5 Power MOSFETs