editor's blog
Subscribe Now

Tunable RF

One of the more delicate parts of a cellphone is the RF circuitry responsible for getting the signals into and out of the phone.  According to UCSD’s Prof. Gabriel Rebeiz (who presented at the MEMS Business Forum, and who’s actually a pretty entertaining presenter), RF performance has been degrading from generation to generation as the number of bands has increased. From 4G on, he points to the need for better antennas, power amps, and filtering – as well as MIMO technology – in order to improve things.

And tunable RF circuits using MEMS-based variable capacitors seems to be what can get us there. He runs a lab that tests out the various solutions available, and he says that the MEMS versions are amazingly linear, with low loss, high quality, and other favorable characteristics. He paints them as 5 – 10 times better than silicon-on-insulator (SOI), silicon-on-sapphire (SOS), or barium strontium tinanate (BST) tuners.

He sees tunable antennas being common in 2013 and 2014, followed by tunable power amps, then notch filters, and then bandpass filters (if there are any). The two MEMS players that lead in the cellphone space and that presumably will be facilitating this change are WiSpry and Cavendish Kinetics.

But he also sees needs in base stations, instrumentation, defense, satellite communications, and automatic test equipment. And he waxed effusive over the performance of Omron’s MEMS switch, which dominates in this market. He simply calls it “amazing,” the “best RF MEMS switch in the world.”

The one gotcha for all of this, however, is cost. It must be low – 20 – 25 cents for a variable capacitor in a phone. He points to integrated CMOS and RF MEMS as the way to make this happen. Cavendish Kinetics’ technology is CMOS compatible; WiSpry includes CMOS on their chips. So now we just have to watch to see whether the prices get to where they need to be.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Battery-free IoT devices: Enabled by Infineon’s NFC Energy-Harvesting
Sponsored by Mouser Electronics and Infineon
Energy harvesting has become more popular than ever before for a wide range of IoT devices. In this episode of Chalk Talk, Amelia Dalton chats with Stathis Zafiriadis from Infineon about the details of Infineon’s NFC energy harvesting technology and how you can get started using this technology in your next IoT design. They discuss the connectivity and sensing capabilities of Infineon’s NAC1080 and NGC1081 NFC actuation controllers and the applications that would be a great fit for these innovative solutions.
Aug 17, 2023
30,006 views