editor's blog
Subscribe Now

Locus of (Con)Fusion

At the MEPTEC MEMS conference a couple weeks ago, one sensor fusion question kept coming up over and over: Who’s in charge of sensor fusion?

On the one hand, IMU makers in general are giving away sensor fusion packages that help integrate the data from the individual sensors in their combo units. Then there are guys like Movea that don’t make sensors themselves, but integrate across a wide variety of sensors for both high- and low-level motion artifacts (motion in their case, but the concept extends to anything).

So who’s job is it?

I happened to have a conversation with Movea’s Dave Rothenberg that same day, and I brought the topic up.

His first comment was that what most IMU makers refer to as sensor fusion is simply the software required to establish orientation, which is a relatively low-level characteristic. He said that this correlated to Movea’s Foundation series, which they’ve actually de-emphasized a bit since it is hard to sell against free software, even if they do think they do a better job.

The sensor guys say they’re the right place to do it because they know their sensors better than anyone else. That actually covers two separate things: the physical characteristics of the sensors and how they operate, and the low-level data details – formats etc. Dave mentioned that it is work for them to adapt their software to different sensors, since they don’t all look or speak alike. (Area for future possible standardization? Future topic…) But they have to get it right in order for the other pieces that lay over it to work properly: errors at the bottom level will compound as further algorithms manipulate them.

(This also ties into the question of loose vs tight coupling, since a sensor maker is in a better position to do things tightly.)

Of course, it’s unlikely that the sensor vendors will want to take on the higher-level algorithms since those, almost by definition, will, at some point, involve sensors that they don’t make. So it looks like things may go the way of the embedded world, where critical low-level drivers and other bits of firmware are provided by (or in close partnership with) the processor maker, with other companies layering higher-value stuff on top. That seems to be how the sensor world is shaping up, which leaves room both for the sensor guys and for the third-party folks.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

AI SoC Chats: Understanding Compute Needs for AI SoCs

Sponsored by Synopsys

Will your next system require high performance AI? Learn what the latest systems are using for computation, including AI math, floating point and dot product hardware, and processor IP.

Click here for more information about DesignWare IP for Amazing AI

featured paper

Enhancing PSAP Audio Performance and Power Efficiency in Hearables with Anti-Noise

Sponsored by Analog Devices

PSAP enhances user's listening experiences with hearables in challenging environments. Long delay in the audio system creates distortion known as comb effect in PSAP. This paper investigates the root cause of the comb effect and explains how a new anti-noise device yields a superior system performance compared to conventional PSAP solutions.

Click here to read more

featured chalk talk

Power over Ethernet - Yesterday, Today, and Tomorrow

Sponsored by Mouser Electronics and Microchip

Power over Ethernet has come a long way since its initial creation way back in 1997. In this episode of Chalk Talk, Amelia Dalton chats with Alan Jay Zwiren from Microchip about the past, present, and future of power over ethernet including details of how a PoE system works, why midspans are crucial for power over ethernet connectivity and why Microchip can be your one stop shop for your next PoE design needs.

Click here for more information about Microchip Technology multi-Power over Ethernet (mPoE)