editor's blog
Subscribe Now

Locus of (Con)Fusion

At the MEPTEC MEMS conference a couple weeks ago, one sensor fusion question kept coming up over and over: Who’s in charge of sensor fusion?

On the one hand, IMU makers in general are giving away sensor fusion packages that help integrate the data from the individual sensors in their combo units. Then there are guys like Movea that don’t make sensors themselves, but integrate across a wide variety of sensors for both high- and low-level motion artifacts (motion in their case, but the concept extends to anything).

So who’s job is it?

I happened to have a conversation with Movea’s Dave Rothenberg that same day, and I brought the topic up.

His first comment was that what most IMU makers refer to as sensor fusion is simply the software required to establish orientation, which is a relatively low-level characteristic. He said that this correlated to Movea’s Foundation series, which they’ve actually de-emphasized a bit since it is hard to sell against free software, even if they do think they do a better job.

The sensor guys say they’re the right place to do it because they know their sensors better than anyone else. That actually covers two separate things: the physical characteristics of the sensors and how they operate, and the low-level data details – formats etc. Dave mentioned that it is work for them to adapt their software to different sensors, since they don’t all look or speak alike. (Area for future possible standardization? Future topic…) But they have to get it right in order for the other pieces that lay over it to work properly: errors at the bottom level will compound as further algorithms manipulate them.

(This also ties into the question of loose vs tight coupling, since a sensor maker is in a better position to do things tightly.)

Of course, it’s unlikely that the sensor vendors will want to take on the higher-level algorithms since those, almost by definition, will, at some point, involve sensors that they don’t make. So it looks like things may go the way of the embedded world, where critical low-level drivers and other bits of firmware are provided by (or in close partnership with) the processor maker, with other companies layering higher-value stuff on top. That seems to be how the sensor world is shaping up, which leaves room both for the sensor guys and for the third-party folks.

Leave a Reply

featured blogs
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 30, 2022
The Team RF "μWaveRiders" blog series is a showcase for Cadence AWR RF products. Monthly topics will vary between Cadence AWR Design Environment release highlights, feature videos, Cadence... ...
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Demo: Achronix Speedster7t 2D NoC vs. Traditional FPGA Routing

Sponsored by Achronix

This demonstration compares an FPGA design utilizing Achronix Speedster7t 2D Network on Chip (NoC) for routing signals with the FPGA device, versus using traditional FPGA routing. The 2D NoC provides a 40% reduction in logic resources required with 40% less compile time needed versus using traditional FPGA routing. Speedster7t FPGAs are optimized for high-bandwidth workloads and eliminate the performance bottlenecks associated with traditional FPGAs.

Subscribe to Achronix's YouTube channel for the latest videos on how to accelerate your data using FPGAs and eFPGA IP

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

Medical Grade Temperature Sensing with the World's Smallest Surface Mount FIR Temperature IC

Sponsored by Mouser Electronics and Melexis

Temperature sensing has come a very long way in recent years. In this episode of Chalk Talk, Amelia Dalton chats with Doug Gates from Melexis about the latest innovation in medical grade temperature sensing. They take a closer look at the different kinds of applications that can use this kind of sensing technology, the role that emissivity and field view play in temperature sensing, and what sets the Melexis’ MLX90632 apart from other temperature sending solutions on the market today. 

Click here for more information about Melexis MLX90632 Infrared Temperature Sensors