editor's blog
Subscribe Now

Optimizing Power at the Architecture Level

When Mentor handed their flagship HLS product, Catapult C, to Calypto almost a year ago, there were a lot of questions about the move. There could be technical, financial, personnel, all kinds of reasons.

Well, at least from a technical standpoint, Calypto just announced what they say was the driving factor: the natural synergy between Catapult C and the Calypto tools. In particular, their PowerPro tool, used for optimizing power.

Automated power optimization typically happens at a low level – typically using netlists (although analysis is moving up to the RTL level). But the real gains are to be had at the architectural level, which is far above RTL even. It’s the realm of untimed C/C++ and SystemC. It’s also the realm of HLS (high-level synthesis, more or less used synonymously with electronic system-level, or ESL). Which is where Catapult C plays.

So they’ve put the two together in a product they’re calling Catapult LP. While the standard Catapult SL can optimize area and performance, it can’t optimize power along with it. Catapult LP does all three by integrating PowerPro under the hood so that it can go figure out what the power will be for a given configuration.

Of course, in order for this to work, Catapult C has to generate RTL out of the high-level code, and then  that RTL has to be synthesized into gates for the low-level power work. Calypto actually has their own RTL synthesis engine which they say can match Synopsys DC results within 15%, which is close enough for architectural level estimation. Yes, they are tracking a tool that’s out of their control, but, realistically, Synopsys isn’t changing DC much these days, so it’s unlikely that there will be much work trying to keep up with the Synopsys updates.

So the designer can create one or more architectural configurations and then have the tool go figure out which one has the lowest power. While the RTL is synthesized in a feed-forward manner for area and performance based on constraints, the power element is managed in a feedback manner.  The gate-level representation can be optimized for clock gating etc. so that those effects can be included in the power estimate, but, at a high level, the designer generates the different options and then selects the one that’s lowest power (of the ones that meet the other constraints). The designer can influence the accuracy and run time through what Calypto calls an “elastic engine” that can be set to select either bit-level or word-level solvers, the former being more accurate but slower.

You can find more information in their release.

Leave a Reply

featured blogs
May 26, 2022
Introducing Synopsys Learning Center, an online, on-demand library of self-paced training modules, webinars, and labs designed for both new & experienced users. The post New Synopsys Learning Center Makes Training Easier and More Accessible appeared first on From Silico...
May 26, 2022
CadenceLIVE Silicon Valley is back as an in-person event for 2022, in the Santa Clara Convention Center as usual. The event will take place on Wednesday, June 8 and Thursday, June 9. Vaccination You... ...
May 25, 2022
There are so many cool STEM (science, technology, engineering, and math) toys available these days, and I want them all!...
May 24, 2022
By Neel Natekar Radio frequency (RF) circuitry is an essential component of many of the critical applications we now rely… ...

featured video

EdgeQ Creates Big Connections with a Small Chip

Sponsored by Cadence Design Systems

Find out how EdgeQ delivered the world’s first 5G base station on a chip using Cadence’s logic simulation, digital implementation, timing and power signoff, synthesis, and physical verification signoff tools.

Click here for more information

featured paper

Reduce EV cost and improve drive range by integrating powertrain systems

Sponsored by Texas Instruments

When you can create automotive applications that do more with fewer parts, you’ll reduce both weight and cost and improve reliability. That’s the idea behind integrating electric vehicle (EV) and hybrid electric vehicle (HEV) designs.

Click to read more

featured chalk talk

Current Sense Amplifiers: What Are They Good For?

Sponsored by Mouser Electronics and Analog Devices

Not sure what current sense amplifiers are and why you would need them? In this episode of Chalk Talk, Amelia Dalton chats with Seema Venkatesh from Analog Devices about the what, why, and how of current sense amplifiers. They take a closer look at why these high precision current sense amplifiers can be a critical addition to your system and how the MAX40080 current sense amplifiers can solve a variety of design challenges in your next design. 

Click here for more information about Maxim Integrated MAX40080 Current-Sense Amplifiers