editor's blog
Subscribe Now

Optimizing Power at the Architecture Level

When Mentor handed their flagship HLS product, Catapult C, to Calypto almost a year ago, there were a lot of questions about the move. There could be technical, financial, personnel, all kinds of reasons.

Well, at least from a technical standpoint, Calypto just announced what they say was the driving factor: the natural synergy between Catapult C and the Calypto tools. In particular, their PowerPro tool, used for optimizing power.

Automated power optimization typically happens at a low level – typically using netlists (although analysis is moving up to the RTL level). But the real gains are to be had at the architectural level, which is far above RTL even. It’s the realm of untimed C/C++ and SystemC. It’s also the realm of HLS (high-level synthesis, more or less used synonymously with electronic system-level, or ESL). Which is where Catapult C plays.

So they’ve put the two together in a product they’re calling Catapult LP. While the standard Catapult SL can optimize area and performance, it can’t optimize power along with it. Catapult LP does all three by integrating PowerPro under the hood so that it can go figure out what the power will be for a given configuration.

Of course, in order for this to work, Catapult C has to generate RTL out of the high-level code, and then  that RTL has to be synthesized into gates for the low-level power work. Calypto actually has their own RTL synthesis engine which they say can match Synopsys DC results within 15%, which is close enough for architectural level estimation. Yes, they are tracking a tool that’s out of their control, but, realistically, Synopsys isn’t changing DC much these days, so it’s unlikely that there will be much work trying to keep up with the Synopsys updates.

So the designer can create one or more architectural configurations and then have the tool go figure out which one has the lowest power. While the RTL is synthesized in a feed-forward manner for area and performance based on constraints, the power element is managed in a feedback manner.  The gate-level representation can be optimized for clock gating etc. so that those effects can be included in the power estimate, but, at a high level, the designer generates the different options and then selects the one that’s lowest power (of the ones that meet the other constraints). The designer can influence the accuracy and run time through what Calypto calls an “elastic engine” that can be set to select either bit-level or word-level solvers, the former being more accurate but slower.

You can find more information in their release.

Leave a Reply

featured blogs
Jul 6, 2020
If you were in the possession of one of these bodacious beauties, what sorts of games and effects would you create using the little scamp?...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Paper

Cryptography: Fundamentals on the Modern Approach

Sponsored by Maxim Integrated

Learn about the fundamental concepts behind modern cryptography, including how symmetric and asymmetric keys work to achieve confidentiality, identification and authentication, integrity, and non-repudiation.

Click here to download the whitepaper

Featured Chalk Talk

Innovative Hybrid Crowbar Protection for AC Power Lines

Sponsored by Mouser Electronics and Littelfuse

Providing robust AC line protection is a tough engineering challenge. Lightning and other unexpected events can wreak havoc with even the best-engineered power supplies. In this episode of Chalk Talk, Amelia Dalton chats with Pete Pytlik of Littelfuse about innovative SIDACtor semiconductor hybrid crowbar protection for AC power lines, that combine the best of TVS and MOV technologies to deliver superior low clamping voltage for power lines.

More information about Littelfuse SIDACtor + MOV AC Line Protection