editor's blog
Subscribe Now

Small single-package IMU

Bosch-Sensortec recently announced a new integrated IMU, the BMI055.

Which, amongst other things, brings up the question: exactly what is an IMU? While researching this for a gyroscope article couple of years ago, I found that the term (which stands for “inertial measurement unit”) was used to refer generically to a class of sensors that use some type of inertia as a way of sensing motion. That inertia might be linear (using an accelerometer) or rotational (using a gyroscope).

The definition Bosch-Sensortec used differed from that, and as I look around now, I see other usage that is similar: an IMU is a combination of sensors – in particular, accelerometers and gyroscopes – for detecting motion. (Some so-called IMUs also include other sensors like magnetometers and possibly even a pressure sensor/barometer, for a so-called 10 degrees of freedom – 6 of which degenerate to 3). Whether this represents a change or simply varying definitions is unclear to me (it’s hard to recreate the internet of a couple years ago). Nonetheless, the term is, to some extent, overloaded; the combo definition seems to predominate now.

While we’re on definitions, you might think of a magnetometer, when used in a navigation application, as a compass (or eCompass) by analogy to an old-school needle compass, which is simply a magnetometer. But that’s not how the MEMS version is defined: a MEMS compass is the combination of an accelerometer and a magnetometer.

To be clear, Bosch-Sensortec announced what they claim to be the smallest combination accelerometer/gyroscope available. It is a multi-die integration (both with respect to the MEMS sensors and the accompanying ASICs); the size advantage comes from housing them in the same package.

As to whether those dice might ever merge, they said that it might happen, but that it’s more likely that the ASICs and MEMS chips will independently merge first, possibly followed by full MEMS/CMOS integration.

They’ve added a power-saving feature through this integration: the accelerometer can wake up the gyroscope. Gyros are notoriously power-hungry; you have to keep the proof mass moving (unlike an accelerometer). So the BMI055 allows the gyro to be turned off. Which isn’t a first, but they’ve sped up the wake-up time from a more typical 30 ms to 10 ms. This is intended to allow the gyro to be woken by the accelerometer without it taking so long that the gyro misses an event. The effect is to cut power in half.

The combined unit comes with free fusion software. There have been two ways of approaching fusion software: using either “tight” or “loose” coupling. Loose coupling means that the data from each sensor is independently processed to some degree before being presented for munging with the output of other sensors. Tight coupling performs the fusion with the raw data from the sensors.

Loose coupling is easier to do (and less reliant on the low-level data format of a sensor), but it’s less accurate. Tight coupling provides a more accurate result, but is more complex and needs to work at the lowest data level (which ties it more closely to the specific sensor).

Bosch-Sensortec uses both: where loose coupling provides sufficient accuracy, they use it, reverting to tight coupling when necessary. Where they make that cut is something they’re keeping to themselves.

You can find more information in their release

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

AI SoC Chats: Understanding Compute Needs for AI SoCs

Sponsored by Synopsys

Will your next system require high performance AI? Learn what the latest systems are using for computation, including AI math, floating point and dot product hardware, and processor IP.

Click here for more information about DesignWare IP for Amazing AI

featured paper

MAX22005 Universal Analog Input Enables Flexible Industrial Control Systems

Sponsored by Analog Devices

This application note provides information to help system engineers develop extremely precise, highly configurable, multi-channel industrial analog input front-ends by utilizing the MAX22005.

Click here to read more

featured chalk talk

RF Interconnect for Automotive Applications

Sponsored by Mouser Electronics and Amphenol RF

Modern and future automotive systems will put enormous demands on RF. We need reliable, high-bandwidth, low-latency, secure wireless connections between cars and infrastructure, from car to car, and within systems on each car. In this episode of Chalk Talk, Amelia Dalton chats with Owen Barthelmes and Kelly Freeman of Amphenol RF to talk about interconnects for these new, challenging automotive RF systems.

Click here for more information