editor's blog
Subscribe Now

Cadence Supports NVMe

Last year, a new standard was overlaid on PCI Express (PCIe) to reset the way non-volatile memory (NVM) is accessed. To date, solid-state disk (SSD) access methodologies had been modeled around the existing mechanisms and limitations surrounding “spinning media” – hard drives. As solid-state memories start to proliferate in roles that used to be dominated by hard drives, those limitations and mechanisms change.

The new standard that accomplishes this is called NVM Express (NVMe), and it uses the basics of PCIe to handle moving the data around, since that’s often how these memory subsystems are connected to the CPU subsystem. But the higher layer adapts PCIe to a specific NVM context.

The standard sets up submission and completion queues – up to 64K of them, each of which can hold up to 64K 64-byte commands. Features include:

  • End-to-end data protection
  • No uncacheable memory-mapped I/O register reads in either the submission or completion path
  • No more than one memory-mapped I/O write to submit a command
  • Queue priority and arbitration
  • Ability to do a 4K-byte read in a single 64-byte command
  • A small basic command set (Read, Write, Write Uncorrectable, Flush, Compare, Dataset Mgmt)
  • Support for interrupt aggregation (including message-signaled interrupts)
  • Multiple namespaces – a device can be decoupled from a “volume”
  • Support for I/O virtualization (like SR-IOV)
  • Error reporting and management
  • Ability to support low-power modes

There are register sets for:

  • Declaring what a particular controller supports
  • Device failure status
  • Configuring an admin queue for managing I/O queues
  • Doorbell registers for submission and completion queues

Cadence just announced their NVMe IP offering, which is based on their existing PCIe IP; the NVMe layer is new, along with the firmware needed to support it. They’ve optimized the underlying PCIe implementation for this particular context, making the overall implementation smaller. They’ve merged the APIs up to the top level so that there is one interface regardless of which layer might be accessed by any given operation. They’ve also coordinated their DMAs for smoother operation and less contention.

They’ve hardware-accelerated the basic commands; the command set itself can be extended through the firmware.

The PCIe PHY is hard IP; the rest is RTL and firmware. They’ve got a tool to configure the IP via an XML description that describes the configuration to their implementation tools.

You can find out more about Cadence’s NVMe IP in their announcement.

Leave a Reply

featured blogs
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...
Sep 25, 2020
Normally, in May, I'd have been off to Unterschleißheim, a suburb of Munich where historically we've held what used to be called CDNLive EMEA. We renamed this CadenceLIVE Europe and... [[ Click on the title to access the full blog on the Cadence Community site...

Featured Video

Product Update: Family of DesignWare Ethernet IP for Time-Sensitive Networking

Sponsored by Synopsys

Hear John Swanson, our product expert, give an update on Synopsys’ DesignWare® Ethernet IP for Time-Sensitive Networking (TSN), which is compliant with IEEE standards and enables predictable guaranteed latency in automotive ADAS and industrial automation SoCs.

Click here for more information about DesignWare Ethernet Quality-of-Service Controller IP

Featured Paper

An Introduction to Automotive LIDAR

Sponsored by Texas Instruments

This white paper is an introduction to industrial and automotive time-of-flight (ToF) light detection and ranging (LIDAR) solutions to serve next-generation autonomous systems.

Click here to download the whitepaper

Featured Chalk Talk

Improving Battery-Life with Ultra Low-Power Processors

Sponsored by Mouser Electronics and NXP

Battery life is critical in today’s mobile device designs, and designing-in ever-larger batteries causes all sorts of awkward compromises. The best strategy is to lower power consumption, and the processor is a great place to start. In this episode of Chalk Talk, Amelia Dalton chats with Nik Jedrzejewski of NXP about the new NXP 7ULP, and how it will help you cut power consumption in your mobile design.

Click here for more information about NXP Semiconductors i.MX 8M Mini Applications Processors