editor's blog
Subscribe Now

Cadence Supports NVMe

Last year, a new standard was overlaid on PCI Express (PCIe) to reset the way non-volatile memory (NVM) is accessed. To date, solid-state disk (SSD) access methodologies had been modeled around the existing mechanisms and limitations surrounding “spinning media” – hard drives. As solid-state memories start to proliferate in roles that used to be dominated by hard drives, those limitations and mechanisms change.

The new standard that accomplishes this is called NVM Express (NVMe), and it uses the basics of PCIe to handle moving the data around, since that’s often how these memory subsystems are connected to the CPU subsystem. But the higher layer adapts PCIe to a specific NVM context.

The standard sets up submission and completion queues – up to 64K of them, each of which can hold up to 64K 64-byte commands. Features include:

  • End-to-end data protection
  • No uncacheable memory-mapped I/O register reads in either the submission or completion path
  • No more than one memory-mapped I/O write to submit a command
  • Queue priority and arbitration
  • Ability to do a 4K-byte read in a single 64-byte command
  • A small basic command set (Read, Write, Write Uncorrectable, Flush, Compare, Dataset Mgmt)
  • Support for interrupt aggregation (including message-signaled interrupts)
  • Multiple namespaces – a device can be decoupled from a “volume”
  • Support for I/O virtualization (like SR-IOV)
  • Error reporting and management
  • Ability to support low-power modes

There are register sets for:

  • Declaring what a particular controller supports
  • Device failure status
  • Configuring an admin queue for managing I/O queues
  • Doorbell registers for submission and completion queues

Cadence just announced their NVMe IP offering, which is based on their existing PCIe IP; the NVMe layer is new, along with the firmware needed to support it. They’ve optimized the underlying PCIe implementation for this particular context, making the overall implementation smaller. They’ve merged the APIs up to the top level so that there is one interface regardless of which layer might be accessed by any given operation. They’ve also coordinated their DMAs for smoother operation and less contention.

They’ve hardware-accelerated the basic commands; the command set itself can be extended through the firmware.

The PCIe PHY is hard IP; the rest is RTL and firmware. They’ve got a tool to configure the IP via an XML description that describes the configuration to their implementation tools.

You can find out more about Cadence’s NVMe IP in their announcement.

Leave a Reply

featured blogs
Nov 30, 2023
Cadence Spectre AMS Designer is a high-performance mixed-signal simulation system. The ability to use multiple engines and drive from a variety of platforms enables you to "rev up" your mixed-signal design verification and take the checkered flag in the race to the ...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

TDK CLT32 power inductors for ADAS and AD power management

Sponsored by TDK

Review the top 3 FAQs (Frequently Asked Questions) regarding TDK’s CLT32 power inductors. Learn why these tiny power inductors address the most demanding reliability challenges of ADAS and AD power management.

Click here for more information

featured paper

Power and Performance Analysis of FIR Filters and FFTs on Intel AgilexĀ® 7 FPGAs

Sponsored by Intel

Learn about the Future of Intel Programmable Solutions Group at intel.com/leap. The power and performance efficiency of digital signal processing (DSP) workloads play a significant role in the evolution of modern-day technology. Compare benchmarks of finite impulse response (FIR) filters and fast Fourier transform (FFT) designs on Intel AgilexĀ® 7 FPGAs to publicly available results from AMD’s Versal* FPGAs and artificial intelligence engines.

Read more

featured chalk talk

Spectral and Color Sensors
Sponsored by Mouser Electronics and ams OSRAM
There has been quite a bit of advancement in the world of spectrometers of the last several years. In this episode of Chalk Talk, Amelia Dalton and Jim Archibald from ams OSRAM investigate how multispectral sensing solutions are driving innovation in a variety of different fields. They also explore the functions involved with multispectral sensing, the details of ams OSRAM’s AS7343 spectral sensor, and why smoke detection is a great application for this kind of multispectral sensing.
Mar 6, 2023
32,523 views