editor's blog
Subscribe Now

Powering Up Power Analysis

Apache has just released their latest RedHawk version, RedHawk-3DX. In it they’ve focused on areas of growing importance for power: 3D ICs, working at the RTL level, and scaling up the size of sub-20-nm designs.

Power is of particular concern for 3D ICs because of the fact that a “cube” of silicon is much harder to cool than a plane. And it’s not a monolithic cube; it’s a bunch of interconnected planes that can become detached if you’re not careful. Even the TSVs can be problematic.

They’ve allowed concurrent analysis of each die and the interconnects and TSVs, with the ability to view each piece separately to see where the hot spots and physical stresses are. And they’re not just calculating heat or power; they are determining physical stresses as well. They do this with models, not with full finite-element (FE) analysis, although the models themselves may be created through more accurate FE methods.

RTL-level analysis is important for debug reasons. Most analysis is now done at the gate level, but most designers won’t have vectors at the gate level; only at the RTL level. And if problems are found at the gate level, it’s hard to debug them since that’s not the level designers work at.

So they now have the logic propagation technology in place to support RTL-level analysis with vector inputs. Vectorless analysis is also possible at the RTL and global levels; this is where you specify approximate transition frequencies on pins, and then probabilities (instead of actual events) are propagated to perform the analysis.

For scaling purposes, they have enabled hierarchical analysis, allowing different blocks to be analyzed independently, creating something akin to a bus-function model, where the periphery of the block is accurate while the internals aren’t. That way you can plug the blocks together to see how they interact and still complete the analysis in a reasonable time. A full chip can thus be analyzed with blocks done with or without vectors, at the gate or RTL level; you can mix and match.

There are lots of other details that you can get to via their announcement.

Leave a Reply

featured blogs
Sep 21, 2023
Wireless communication in workplace wearables protects and boosts the occupational safety and productivity of industrial workers and front-line teams....
Sep 21, 2023
Labforge is a Waterloo, Ontario-based company that designs, builds, and manufactures smart cameras used in industrial automation and defense applications. By bringing artificial intelligence (AI) into their vision systems with Cadence , they can automate tasks that are diffic...
Sep 21, 2023
Not knowing all the stuff I don't know didn't come easy. I've had to read a lot of books to get where I am....
Sep 21, 2023
See how we're accelerating the multi-die system chip design flow with partner Samsung Foundry, making it easier to meet PPA and time-to-market goals.The post Samsung Foundry and Synopsys Accelerate Multi-Die System Design appeared first on Chip Design....

featured video

TDK PowerHap Piezo Actuators for Ideal Haptic Feedback

Sponsored by TDK

The PowerHap product line features high acceleration and large forces in a very compact design, coupled with a short response time. TDK’s piezo actuators also offers good sensing functionality by using the inverse piezo effect. Typical applications for the include automotive displays, smartphones and tablet.

Click here for more information about PowerHap Piezo Actuators

featured paper

Accelerating Monte Carlo Simulations for Faster Statistical Variation Analysis, Debugging, and Signoff of Circuit Functionality

Sponsored by Cadence Design Systems

Predicting the probability of failed ICs has become difficult with aggressive process scaling and large-volume manufacturing. Learn how key EDA simulator technologies and methodologies enable fast (minimum number of simulations) and accurate high-sigma analysis.

Click to read more

featured chalk talk

Series Five Product Introduction
Size and weight are critical design considerations when it comes to military and aerospace applications. One way to minimize weight and size in these kinds of designs is to take a closer look at your choice of connectors. In this episode of Chalk Talk, Amelia Dalton chats with Anthony Annunziata from Amphenol Aerospace about the series five next generation connectors from Amphenol Aerospace. They investigate the size and weight advantages that these connectors bring to military and aerospace applications and how you can get started using the series five in your next design.
Nov 3, 2022
37,551 views