editor's blog
Subscribe Now

FPGA Prototype Debug Access

When tracing events on any kind of system, it’s always faster to go local: the farther away the data has to go, the slower it goes. Which is why FPGAs are nice in that their internal memory can be used as a trace buffer, allowing really fast capture.

But that also means that you have to have that memory available. Synopsys has announced a daughter card for their HAPS prototype systems that allows fast capture to an off-chip memory. It uses their custom HAPS-TRAK connector. The clock can run over 200 MHz, but it’s used to sample a system clock of up to 60 MHz. It works in conjunction with their RTL debugger, Identify (of Synplicity pedigree).

Some FPGA resource is still needed – roughly 500 LUTs for the SRAM controller and 2-4 LUTs per watchpoint – but the need for FPGA trace buffer memory is eliminated.

The connector that this debug card plugs into is also used for a variety of other I/O adapter cards – which, at first blush, would seem to be a problem since you can’t stack daughter cards. If there were only one, then you’d have to choose between I/O and debug – not a fun choice. But, in fact, there are 6 or 7 such connectors per FPGA (and multiple FPGAs per board), so any such tradeoff is much less likely.

After the trace capture, the daughter card can be offloaded via JTAG, which does take a couple minutes.

More detail in their release

Leave a Reply

featured blogs
Apr 19, 2024
Data type conversion is a crucial aspect of programming that helps you handle data across different data types seamlessly. The SKILL language supports several data types, including integer and floating-point numbers, character strings, arrays, and a highly flexible linked lis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

Optimize Performance: RF Solutions from PCB to Antenna
Sponsored by Mouser Electronics and Amphenol
RF is a ubiquitous design element found in a large variety of electronic designs today. In this episode of Chalk Talk, Amelia Dalton and Rahul Rajan from Amphenol RF discuss how you can optimize your RF performance through each step of the signal chain. They examine how you can utilize Amphenol’s RF wide range of connectors including solutions for PCBs, board to board RF connectivity, board to panel and more!
May 25, 2023
37,058 views