editor's blog
Subscribe Now

FPGA Prototype Debug Access

When tracing events on any kind of system, it’s always faster to go local: the farther away the data has to go, the slower it goes. Which is why FPGAs are nice in that their internal memory can be used as a trace buffer, allowing really fast capture.

But that also means that you have to have that memory available. Synopsys has announced a daughter card for their HAPS prototype systems that allows fast capture to an off-chip memory. It uses their custom HAPS-TRAK connector. The clock can run over 200 MHz, but it’s used to sample a system clock of up to 60 MHz. It works in conjunction with their RTL debugger, Identify (of Synplicity pedigree).

Some FPGA resource is still needed – roughly 500 LUTs for the SRAM controller and 2-4 LUTs per watchpoint – but the need for FPGA trace buffer memory is eliminated.

The connector that this debug card plugs into is also used for a variety of other I/O adapter cards – which, at first blush, would seem to be a problem since you can’t stack daughter cards. If there were only one, then you’d have to choose between I/O and debug – not a fun choice. But, in fact, there are 6 or 7 such connectors per FPGA (and multiple FPGAs per board), so any such tradeoff is much less likely.

After the trace capture, the daughter card can be offloaded via JTAG, which does take a couple minutes.

More detail in their release

Leave a Reply

featured blogs
Jul 5, 2022
The 30th edition of SMM , the leading international maritime trade fair, is coming soon. The world of shipbuilders, naval architects, offshore experts and maritime suppliers will be gathering in... ...
Jul 5, 2022
By Editorial Team The post Q&A with Luca Amaru, Logic Synthesis Guru and DAC Under-40 Innovators Honoree appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys USB4 PHY Silicon Correlation with Keysight ADS Simulation

Sponsored by Synopsys

This video features Synopsys USB4 PHY IP showing silicon correlation with IBIS-AMI simulation using Keysight PathWave ADS.

Learn More

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

Power Profiler II

Sponsored by Mouser Electronics and Nordic Semiconductor

If you are working on a low-power IoT design, you are going to face power issues that can get quite complicated. Addressing these issues earlier in your design process can save you a lot of time, effort, and frustration. In this episode of Chalk Talk, Amelia Dalton chats with Kristian Sæther from Nordic Semiconductor about the details of the new Nordic Power Profiler Kit II - including how it can measure actual current, help you configure the right design settings, and show you a visualized power profile for your next design.

Click here for more information about the Nordic Semiconductor Power Profiler Kit II (PPK2)