editor's blog
Subscribe Now

FPGA Prototype Debug Access

When tracing events on any kind of system, it’s always faster to go local: the farther away the data has to go, the slower it goes. Which is why FPGAs are nice in that their internal memory can be used as a trace buffer, allowing really fast capture.

But that also means that you have to have that memory available. Synopsys has announced a daughter card for their HAPS prototype systems that allows fast capture to an off-chip memory. It uses their custom HAPS-TRAK connector. The clock can run over 200 MHz, but it’s used to sample a system clock of up to 60 MHz. It works in conjunction with their RTL debugger, Identify (of Synplicity pedigree).

Some FPGA resource is still needed – roughly 500 LUTs for the SRAM controller and 2-4 LUTs per watchpoint – but the need for FPGA trace buffer memory is eliminated.

The connector that this debug card plugs into is also used for a variety of other I/O adapter cards – which, at first blush, would seem to be a problem since you can’t stack daughter cards. If there were only one, then you’d have to choose between I/O and debug – not a fun choice. But, in fact, there are 6 or 7 such connectors per FPGA (and multiple FPGAs per board), so any such tradeoff is much less likely.

After the trace capture, the daughter card can be offloaded via JTAG, which does take a couple minutes.

More detail in their release

Leave a Reply

featured blogs
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...
Sep 25, 2020
Normally, in May, I'd have been off to Unterschleißheim, a suburb of Munich where historically we've held what used to be called CDNLive EMEA. We renamed this CadenceLIVE Europe and... [[ Click on the title to access the full blog on the Cadence Community site...
Sep 24, 2020
I just saw a video from 2012 in which Jeri Ellsworth is strolling around a Makerfaire flaunting her Commodore 64-based bass guitar....
Sep 24, 2020
Samtec works with system architects in the early stages of their design to create solutions for cable management which provide even distribution of thermal load. Using ultra-low skew twinax cable to route signals over the board is a key performance enabler as signal integrity...

Featured Video

AI SoC Chats: Primitive Math IP for AI

Sponsored by Synopsys

Learn about the market trends and challenges around primitive math functions (floating point and integer math) in AI chipset development, and how DesignWare IP can help.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

4 audio trends transforming the automotive industry

Sponsored by Texas Instruments

The automotive industry is focused on creating a comfortable driving experience – but without compromising fuel efficiency or manufacturing costs. The adoption of these new audio technologies in cars – while requiring major architecture changes – promise to bring a richer driving and in-car communication experience. Discover techniques using microphones, amplifiers, loudspeakers and advanced digital signal processing that help enable the newest trends in automotive audio applications.

Click here to download the whitepaper

Featured Chalk Talk

Cadence Celsius Thermal Solver

Sponsored by Cadence Design Systems

Electrical-thermal co-simulation can dramatically improve the system design process, allowing thermal design adaptation to be done much earlier. The Cadence Celsius Thermal Solver is a complete electrical-thermal co-simulation solution for the full hierarchy of electronic systems from ICs to physical enclosures. In this episode of Chalk Talk, Amelia Dalton chats with CT Kao of Cadence Design Systems about how the Celsius Thermal Solver can help detect and mitigate thermal issues early in the design process.

More information about Celsius Thermal Solver