editor's blog
Subscribe Now

Atmel Takes On the Actual Screen

We’ve talked about Atmel’s touch activities before, both with respect to their controllers and their stylus venture (which also features their controllers). To date, they haven’t been overtly participating in the business of creating actual touchscreens.

But, behind the scenes, they’ve spent the last couple years developing a new projected capacitance (P-CAP) technology called XSense that can be printed onto flexible rolls and used for user interfaces of a much sleeker variety than just your basic flat, brittle screen. In addition to the obvious attractiveness of flexibility, they boast two benefits: linearity and scalability.

Linearity (which also helps scalability) simply means that you can determine where a touch event occurred more accurately. They claim to be able to capture handwriting with a stylus.

Scalability means that they can go to larger screens. This has been an issue with P-CAP technology to some extent. Atmel says that a major limiting factor has been yield, especially cracks in the metal traces. In fact, you’d think that, with a flexible material, cracking might be even more of an issue.

They say they’ve addressed this in a number of ways:

–          They have a proprietary grid pattern (they didn’t say what); apparently this tends to be part of touchscreen secret sauce in general;

–          They have a proprietary manufacturing flow for laying the copper lines that they use (on which they didn’t elaborate, such caginess being part of the “proprietary” thing);

–          And they use redundancy: it’s not that they simply don’t get cracks, but they can tolerate some cracking without it affecting yield.

They currently have requests for sizes up to 32”. They could go bigger – the only limitation is the size of the roll-to-roll machines; they’re not limited by the technology.

One other benefit of the flexible nature of the material is that it can wrap over the edges of the screen, making it possible to create a unit without a bezel (which seems to be something people are always looking for).

You can get more info in their release

Leave a Reply

featured blogs
May 19, 2022
The current challenge in custom/mixed-signal design is to have a fast and silicon-accurate methodology. In this blog series, we are exploring the Custom IC Design Flow and Methodology stages. This... ...
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...
Apr 29, 2022
What do you do if someone starts waving furiously at you, seemingly delighted to see you, but you fear they are being overenthusiastic?...

featured video

Increasing Semiconductor Predictability in an Unpredictable World

Sponsored by Synopsys

SLM presents significant value-driven opportunities for assessing the reliability and resilience of silicon devices, from data gathered during design, manufacture, test, and in-field. Silicon data driven analytics provide new actionable insights to address the challenges posed to large scale silicon designs.

Learn More

featured paper

Reduce EV cost and improve drive range by integrating powertrain systems

Sponsored by Texas Instruments

When you can create automotive applications that do more with fewer parts, you’ll reduce both weight and cost and improve reliability. That’s the idea behind integrating electric vehicle (EV) and hybrid electric vehicle (HEV) designs.

Click to read more

featured chalk talk

Reduce Power System Needs with Multichannel Power Monitors

Sponsored by Mouser Electronics and Microchip

Power monitors can be very effective in terms of power management for a variety of designs and the use of a multichannel power monitors can not only lower your overall system power but also lower your code overhead, simplify prototyping and event detection. In this episode of Chalk Talk, Amelia Dalton chats with Mitch Polonsky from Microchip about the benefits of multichannel power monitors and how Microchip’s PAC194x and PAC195x can help you monitor your power in your next design.

Click here for more information about Microchip Technology PAC194x & PAC195x Monitors