editor's blog
Subscribe Now

A Self-Healing Radio on a Chip

Continuing with the occasional note about interesting ISSCC presentations, there was an interesting talk about a self-healing radio-on-a-chip – in fact, probably the best actual presentation I’ve ever seen at ISSCC. The topic seems aligned with a budding tendency of radio systems to correct themselves dynamically while in use.

In this case, a number of “knobs” were built into the radio circuitry, and the device was instrumented with the ability to create various test tones, sensors to detect the response to those tones as well as other parameters like power level and temperature, and then a “cautious” control mechanism. The term “cautious” was never clearly defined, but I’m assuming it means that adjustments are made conservatively rather than rocketing the settings around with every little blip.

They used a fundamentally different optimization strategy. Simplistically put, if you vary parameters in a circuit and measure resulting performance, you can take the design in one of two different directions. Getting the best performance generally means you have a very high peak right at the sweet spot of the parameter, but performance drops off precipitously on either side – it looks like a cusp. For a static design, this isn’t practical, since the chance of remaining atop that peak is nil. To quote the speaker, “Everything is sensitive to everything.”

Instead, designers compromise on peak performance, but design in a way that is more tolerant of drift, more like an upside-down parabola or something. This is how design is typically done.

For this paper, however, the concept was to use the optimal approach and then dynamically measure and adjust in real time to keep performance balanced atop that peak. Kind of like designing a Seque to remain upright, it’s least-likely position.

Specifically, the healable parameters they chose were transmitter 3rd-order distortion, transmitter IQ mismatch, receiver noise figure, and PLL automatic locking. They included a self-healing controller ASIC on the same chip. Where possible, they re-used existing circuits, like the DAC, to minimize the area impact of the self-healing circuits.

You can find more in paper 18.5 of the ISSCC proceedings.

Leave a Reply

featured blogs
Apr 13, 2021
We explain the NHTSA's latest automotive cybersecurity best practices, including guidelines to protect automotive ECUs and connected vehicle technologies. The post NHTSA Shares Best Practices for Improving Autmotive Cybersecurity appeared first on From Silicon To Software....
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

Featured Chalk Talk

Intel NUC Elements

Sponsored by Mouser Electronics and Intel

Intel Next Unit of Computing (NUC) compute elements are small-form-factor barebone computer kits and components that are perfect for a wide variety of system designs. In this episode of Chalk Talk, Amelia Dalton chats with Kristin Brown of Intel System Product Group about pre-engineered solutions from Intel that can provide the appropriate level of computing power for your next design, with a minimal amount of development effort from your engineering team.

Click here for more information about Intel NUC 8 Compute Element (U-Series)