editor's blog
Subscribe Now

A Self-Healing Radio on a Chip

Continuing with the occasional note about interesting ISSCC presentations, there was an interesting talk about a self-healing radio-on-a-chip – in fact, probably the best actual presentation I’ve ever seen at ISSCC. The topic seems aligned with a budding tendency of radio systems to correct themselves dynamically while in use.

In this case, a number of “knobs” were built into the radio circuitry, and the device was instrumented with the ability to create various test tones, sensors to detect the response to those tones as well as other parameters like power level and temperature, and then a “cautious” control mechanism. The term “cautious” was never clearly defined, but I’m assuming it means that adjustments are made conservatively rather than rocketing the settings around with every little blip.

They used a fundamentally different optimization strategy. Simplistically put, if you vary parameters in a circuit and measure resulting performance, you can take the design in one of two different directions. Getting the best performance generally means you have a very high peak right at the sweet spot of the parameter, but performance drops off precipitously on either side – it looks like a cusp. For a static design, this isn’t practical, since the chance of remaining atop that peak is nil. To quote the speaker, “Everything is sensitive to everything.”

Instead, designers compromise on peak performance, but design in a way that is more tolerant of drift, more like an upside-down parabola or something. This is how design is typically done.

For this paper, however, the concept was to use the optimal approach and then dynamically measure and adjust in real time to keep performance balanced atop that peak. Kind of like designing a Seque to remain upright, it’s least-likely position.

Specifically, the healable parameters they chose were transmitter 3rd-order distortion, transmitter IQ mismatch, receiver noise figure, and PLL automatic locking. They included a self-healing controller ASIC on the same chip. Where possible, they re-used existing circuits, like the DAC, to minimize the area impact of the self-healing circuits.

You can find more in paper 18.5 of the ISSCC proceedings.

Leave a Reply

featured blogs
May 19, 2022
The current challenge in custom/mixed-signal design is to have a fast and silicon-accurate methodology. In this blog series, we are exploring the Custom IC Design Flow and Methodology stages. This... ...
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...
Apr 29, 2022
What do you do if someone starts waving furiously at you, seemingly delighted to see you, but you fear they are being overenthusiastic?...

featured video

Increasing Semiconductor Predictability in an Unpredictable World

Sponsored by Synopsys

SLM presents significant value-driven opportunities for assessing the reliability and resilience of silicon devices, from data gathered during design, manufacture, test, and in-field. Silicon data driven analytics provide new actionable insights to address the challenges posed to large scale silicon designs.

Learn More

featured paper

Introducing new dynamic features for exterior automotive lights with DLP® technology

Sponsored by Texas Instruments

Exterior lighting, primarily used to illuminate ground areas near the vehicle door, can now be transformed into a projection system used for both vehicle communication and unique styling features. A small lighting module that utilizes automotive-grade digital micromirror devices, such as the DLP2021-Q1 or DLP3021-Q1, can display an endless number of patterns in any color imaginable as well as communicate warnings and alerts to drivers and other vehicles.

Click to read more

featured chalk talk

Accelerating Innovation at the Edge with Xilinx Adaptive System on Modules

Sponsored by Xilinx

The combination of system-on-module technology with advanced SoCs with programmable logic offer the ultimate in functionality, performance, flexibility, power efficiency, and ease of use. In this episode of Chalk Talk, Amelia Dalton chats with Karan Kantharia of Xilinx about the new Kira SOM, and how it enables faster time-to-deployment versus conventional component-based design.

Click here for more information about Kria Adaptive System-on-Modules