editor's blog
Subscribe Now

Getting Away from Rare Materials

Every couple months or so it’s not hard to find some mention somewhere in the mainstream media about the industrial world’s vulnerability with respect to rare materials. Obviously, anything that’s actually rare has a limited supply overall. In other cases, there may be lots of material, but if it’s locked up in one country, then that country has the potential to create scarcity at will. Makes everyone just a tad jumpy.

Not being a materials scientist per se, it’s always amazed me that some specific bizarre metal or ceramic can have some critical function for a battery or a transistor or, heck, even a connector. Seems dibs and dabs of these substances show up all over.

More surprising, then, was a suggestion by imec’s Rudy Lauwereins that the concerns about rare materials will melt away with new engineered materials. While he didn’t outright say it would be easy, his comments came with an assuredness that felt very out of sync with the world of materials discovery that I had been raised with.

Our chemistry and physics history books often tell stories of trial and error. How many materials did Edison try before landing on tungsten for a light bulb? How many tales are there of scientists patiently working through a menagerie of substances either to see if they work in an application or, even more fundamentally, just to see what happens in a given situation?

But it seems like we’ve pretty much gone through all the random combinations. Or perhaps we’ve hit all the good stuff and the yield on further such explorations aren’t worth the effort. Most importantly, however, we now know how this stuff works. Or we think we do.

It’s this newer atomic-level knowledge of materials that will make the difference. Mr. Lauwereins describes it simply as understanding the mechanical, electrical, and optical properties of different atoms, and then using that knowledge to engineer new materials directly – possibly coming up with things that don’t even exist in nature, and so wouldn’t be found in an old-school lab with a long laundry list of things to try.

Bottom line: he was confident that our dependence on rare materials will disappear as engineered analogs replace them. Could we end up replacing geopolitical concerns with fears of “geo-corporate” control? Possibly, but, at the very least, that’s an “artificial” issue that can, in theory, be solved. Ultimately, if we do things right, scarcity would only apply to materials that were truly rare, and by avoiding their use, we become less vulnerable.

Leave a Reply

featured blogs
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...
Sep 25, 2020
Normally, in May, I'd have been off to Unterschleißheim, a suburb of Munich where historically we've held what used to be called CDNLive EMEA. We renamed this CadenceLIVE Europe and... [[ Click on the title to access the full blog on the Cadence Community site...
Sep 24, 2020
I just saw a video from 2012 in which Jeri Ellsworth is strolling around a Makerfaire flaunting her Commodore 64-based bass guitar....
Sep 24, 2020
Samtec works with system architects in the early stages of their design to create solutions for cable management which provide even distribution of thermal load. Using ultra-low skew twinax cable to route signals over the board is a key performance enabler as signal integrity...

Featured Video

Product Update: Synopsys and SK hynix Discuss HBM2E at 3.6Gbps

Sponsored by Synopsys

In this video interview hear from Keith Kim, Team Leader of DRAM Technical Marketing at SK hynix, discussing the wide adoption of HBM2E at 3.6Gbps and successful collaboration with Synopsys to validate the DesignWare HBM2E IP at the maximum speed.

Click here for more information about DesignWare DDR IP Solutions

Featured Paper

Helping physicians achieve faster, more accurate patient diagnoses with molecular test technology

Sponsored by Texas Instruments

Point-of-care molecular diagnostics (PoC) help physicians achieve faster, more accurate patient diagnoses and treatment decisions. This article breaks down how molecular test technology works and the building blocks for a PoC molecular diagnostics analyzer sensor front end system.

Read the Article

Featured Chalk Talk

Cloud Computing for Electronic Design (Are We There Yet?)

Sponsored by Cadence Design Systems

When your project is at crunch time, a shortage of server capacity can bring your schedule to a crawl. But, the rest of the year, having a bunch of extra servers sitting around idle can be extremely expensive. Cloud-based EDA lets you have exactly the compute resources you need, when you need them. In this episode of Chalk Talk, Amelia Dalton chats with Craig Johnson of Cadence Design Systems about Cadence’s cloud-based EDA solutions.

More information about the Cadence Cloud Portfolio