editor's blog
Subscribe Now

Getting Away from Rare Materials

Every couple months or so it’s not hard to find some mention somewhere in the mainstream media about the industrial world’s vulnerability with respect to rare materials. Obviously, anything that’s actually rare has a limited supply overall. In other cases, there may be lots of material, but if it’s locked up in one country, then that country has the potential to create scarcity at will. Makes everyone just a tad jumpy.

Not being a materials scientist per se, it’s always amazed me that some specific bizarre metal or ceramic can have some critical function for a battery or a transistor or, heck, even a connector. Seems dibs and dabs of these substances show up all over.

More surprising, then, was a suggestion by imec’s Rudy Lauwereins that the concerns about rare materials will melt away with new engineered materials. While he didn’t outright say it would be easy, his comments came with an assuredness that felt very out of sync with the world of materials discovery that I had been raised with.

Our chemistry and physics history books often tell stories of trial and error. How many materials did Edison try before landing on tungsten for a light bulb? How many tales are there of scientists patiently working through a menagerie of substances either to see if they work in an application or, even more fundamentally, just to see what happens in a given situation?

But it seems like we’ve pretty much gone through all the random combinations. Or perhaps we’ve hit all the good stuff and the yield on further such explorations aren’t worth the effort. Most importantly, however, we now know how this stuff works. Or we think we do.

It’s this newer atomic-level knowledge of materials that will make the difference. Mr. Lauwereins describes it simply as understanding the mechanical, electrical, and optical properties of different atoms, and then using that knowledge to engineer new materials directly – possibly coming up with things that don’t even exist in nature, and so wouldn’t be found in an old-school lab with a long laundry list of things to try.

Bottom line: he was confident that our dependence on rare materials will disappear as engineered analogs replace them. Could we end up replacing geopolitical concerns with fears of “geo-corporate” control? Possibly, but, at the very least, that’s an “artificial” issue that can, in theory, be solved. Ultimately, if we do things right, scarcity would only apply to materials that were truly rare, and by avoiding their use, we become less vulnerable.

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general -- and employing them to perform masking, bit testing, and bit setting/clearing operations in particular -- can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

featured video

Product Update: What’s Hot in DesignWare® IP for PCIe® 5.0

Sponsored by Synopsys

Get the latest update on Synopsys' DesignWare Controller and PHY IP for PCIe 5.0 and how the low-latency, compact, power-efficient, and silicon-proven solution can enable your SoCs while reducing risk.

Click here for more information about DesignWare IP Solutions for PCI Express

Featured Paper

Cryptography: A Closer Look at the Algorithms

Sponsored by Maxim Integrated

Get more details about how cryptographic algorithms are implemented and how an asymmetric key algorithm can be used to exchange a shared private key.

Click here to download the whitepaper

Featured Chalk Talk

Maxim's First Secure Micro with ChipDNA PUF Technology

Sponsored by Mouser Electronics and Maxim Integrated

Most applications today demand security, and that starts with your microcontroller. In order to get a truly secure MCU, you need a root of trust such as a physically unclonable function (PUF). In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis of Maxim Integrated about how the Maxim MAX32520 MCU with PUF can secure your next design.

Click here for more info about Amphenol RF 5G Wireless Connectors