editor's blog
Subscribe Now

Getting Away from Rare Materials

Every couple months or so it’s not hard to find some mention somewhere in the mainstream media about the industrial world’s vulnerability with respect to rare materials. Obviously, anything that’s actually rare has a limited supply overall. In other cases, there may be lots of material, but if it’s locked up in one country, then that country has the potential to create scarcity at will. Makes everyone just a tad jumpy.

Not being a materials scientist per se, it’s always amazed me that some specific bizarre metal or ceramic can have some critical function for a battery or a transistor or, heck, even a connector. Seems dibs and dabs of these substances show up all over.

More surprising, then, was a suggestion by imec’s Rudy Lauwereins that the concerns about rare materials will melt away with new engineered materials. While he didn’t outright say it would be easy, his comments came with an assuredness that felt very out of sync with the world of materials discovery that I had been raised with.

Our chemistry and physics history books often tell stories of trial and error. How many materials did Edison try before landing on tungsten for a light bulb? How many tales are there of scientists patiently working through a menagerie of substances either to see if they work in an application or, even more fundamentally, just to see what happens in a given situation?

But it seems like we’ve pretty much gone through all the random combinations. Or perhaps we’ve hit all the good stuff and the yield on further such explorations aren’t worth the effort. Most importantly, however, we now know how this stuff works. Or we think we do.

It’s this newer atomic-level knowledge of materials that will make the difference. Mr. Lauwereins describes it simply as understanding the mechanical, electrical, and optical properties of different atoms, and then using that knowledge to engineer new materials directly – possibly coming up with things that don’t even exist in nature, and so wouldn’t be found in an old-school lab with a long laundry list of things to try.

Bottom line: he was confident that our dependence on rare materials will disappear as engineered analogs replace them. Could we end up replacing geopolitical concerns with fears of “geo-corporate” control? Possibly, but, at the very least, that’s an “artificial” issue that can, in theory, be solved. Ultimately, if we do things right, scarcity would only apply to materials that were truly rare, and by avoiding their use, we become less vulnerable.

Leave a Reply

featured blogs
Jul 5, 2022
The 30th edition of SMM , the leading international maritime trade fair, is coming soon. The world of shipbuilders, naval architects, offshore experts and maritime suppliers will be gathering in... ...
Jul 5, 2022
By Editorial Team The post Q&A with Luca Amaru, Logic Synthesis Guru and DAC Under-40 Innovators Honoree appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Multi-Vendor Extra Long Reach 112G SerDes Interoperability Between Synopsys and AMD

Sponsored by Synopsys

This OFC 2022 demo features Synopsys 112G Ethernet IP interoperating with AMD's 112G FPGA and 2.5m DAC, showcasing best TX and RX performance with auto negotiation and link training.

Learn More

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

E-Mobility: Electronic Challenges and Solutions

Sponsored by Mouser Electronics and Würth Elektronik

The future electrification of the world’s transportation industry depends on the infrastructure we create today. In this episode of Chalk Talk, Amelia Dalton chats with Sven Lerche from Würth Elektronik about the electronic challenges and solutions for today’s e-mobility designs and EV charging stations. They take a closer look at the trends in these kinds of designs, the role that electronic parts play in terms of robustness, and how Würth’s REDCUBE can help you with your next electric vehicle or EV charging station design.

Click here for more information about Würth Elektronik Automotive Products