editor's blog
Subscribe Now

Getting Away from Rare Materials

Every couple months or so it’s not hard to find some mention somewhere in the mainstream media about the industrial world’s vulnerability with respect to rare materials. Obviously, anything that’s actually rare has a limited supply overall. In other cases, there may be lots of material, but if it’s locked up in one country, then that country has the potential to create scarcity at will. Makes everyone just a tad jumpy.

Not being a materials scientist per se, it’s always amazed me that some specific bizarre metal or ceramic can have some critical function for a battery or a transistor or, heck, even a connector. Seems dibs and dabs of these substances show up all over.

More surprising, then, was a suggestion by imec’s Rudy Lauwereins that the concerns about rare materials will melt away with new engineered materials. While he didn’t outright say it would be easy, his comments came with an assuredness that felt very out of sync with the world of materials discovery that I had been raised with.

Our chemistry and physics history books often tell stories of trial and error. How many materials did Edison try before landing on tungsten for a light bulb? How many tales are there of scientists patiently working through a menagerie of substances either to see if they work in an application or, even more fundamentally, just to see what happens in a given situation?

But it seems like we’ve pretty much gone through all the random combinations. Or perhaps we’ve hit all the good stuff and the yield on further such explorations aren’t worth the effort. Most importantly, however, we now know how this stuff works. Or we think we do.

It’s this newer atomic-level knowledge of materials that will make the difference. Mr. Lauwereins describes it simply as understanding the mechanical, electrical, and optical properties of different atoms, and then using that knowledge to engineer new materials directly – possibly coming up with things that don’t even exist in nature, and so wouldn’t be found in an old-school lab with a long laundry list of things to try.

Bottom line: he was confident that our dependence on rare materials will disappear as engineered analogs replace them. Could we end up replacing geopolitical concerns with fears of “geo-corporate” control? Possibly, but, at the very least, that’s an “artificial” issue that can, in theory, be solved. Ultimately, if we do things right, scarcity would only apply to materials that were truly rare, and by avoiding their use, we become less vulnerable.

Leave a Reply

featured blogs
Dec 7, 2023
Building on the success of previous years, the 2024 edition of the DATE (Design, Automation and Test in Europe) conference will once again include the Young People Programme. The largest electronic design automation (EDA) conference in Europe, DATE will be held on 25-27 March...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

Nexperia Energy Harvesting Solutions
Sponsored by Mouser Electronics and Nexperia
Energy harvesting is a great way to ensure a sustainable future of electronics by eliminating batteries and e-waste. In this episode of Chalk Talk, Amelia Dalton and Rodrigo Mesquita from Nexperia explore the process of designing in energy harvesting and why Nexperia’s inductor-less PMICs are an energy harvesting game changer for wearable technology, sensor-based applications, and more!
May 9, 2023
26,294 views