editor's blog
Subscribe Now

What Comes Around… Is Reflected?

With higher-frequency (GHz) signals becoming more prevalent on trusty old-school FR-4 boards, it’s become increasingly important to test the quality of the lines – specifically, their insertion loss (SDD21) – as a PCB manufacturing step. The problem is that you have to probe both ends of a trace in order to do this. Not so hard in the lab, but high-volume testers aren’t really built for that – they want to probe in one place.

Two years ago at DesignCon, Intel proposed a new method of determining the insertion loss by taking time-domain measurements at only two points, both at the same end of the line. They called it “Single-Ended TDR to Differential Insertion Loss,” or SET2DIL.

A quick terminology note here: there seems to be inconsistency in the industry about what those test points are called. Some refer to them as two “terminals,” which equate to one “port.” Rhode and Schwartz (and perhaps other) seem to equate “terminal” and “port,” so the kinds of systems we’re talking about here are all four-terminal systems, but may be two-port or four-port systems, depending on your definition of “port.” So the problem being solved here is the ability to test the four-terminal system by measuring only two terminals. And, critically, both of those terminals are at the same end of the two traces that make up the differential pair.

At this year’s DesignCon, SET2DIL appears to be showing up, at least in software form. Rhode and Schwarz was demonstrating, among other things, that their vector network analyzer (VNA) could make the time domain (reflectometry or transmissometry) measurements and then drive them into a computer that ran the SET2DIL algorithm to calculate the differential insertion loss. They say that they’re working to integrate the algorithm into the VNA itself.

Polar Instruments also appears to be supporting SET2DIL in software as of their 2012 Atlas release.

More information on Rhode and Schwarz’s solution can be found in their release.

Leave a Reply

featured blogs
Jan 25, 2021
A mechanical look at connector skew in your systems.  Electrical and Mechanical requirements collide when looking at interconnects in your electrical system. What can you do about it, how do you plan for it, and how do you pick the most rugged solution that still carries...
Jan 25, 2021
There is a whole portfolio of official "best of CES" awards, 14 of them this year. Of course, every publication lists its own best-of list, but the official CES awards are judged by... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jan 22, 2021
I was recently introduced to the concept of a tray that quickly and easily attaches to your car'€™s steering wheel (not while you are driving, of course). What a good idea!...
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...

featured paper

Common Design Pitfalls When Designing With Hall 2D Sensors And How To Avoid Them

Sponsored by Texas Instruments

This article discusses three widespread application issues in industrial and automotive end equipment – rotary encoding, in-plane magnetic sensing, and safety-critical – that can be solved more efficiently using devices with new features and higher performance. We will discuss in which end products these applications can be found and also provide a comparison with our traditional digital Hall-effect sensors showing how the new releases complement our existing portfolio.

Click here to download the whitepaper

Featured Chalk Talk

Innovative Hybrid Crowbar Protection for AC Power Lines

Sponsored by Mouser Electronics and Littelfuse

Providing robust AC line protection is a tough engineering challenge. Lightning and other unexpected events can wreak havoc with even the best-engineered power supplies. In this episode of Chalk Talk, Amelia Dalton chats with Pete Pytlik of Littelfuse about innovative SIDACtor semiconductor hybrid crowbar protection for AC power lines, that combine the best of TVS and MOV technologies to deliver superior low clamping voltage for power lines.

More information about Littelfuse SIDACtor + MOV AC Line Protection