editor's blog
Subscribe Now

What Comes Around… Is Reflected?

With higher-frequency (GHz) signals becoming more prevalent on trusty old-school FR-4 boards, it’s become increasingly important to test the quality of the lines – specifically, their insertion loss (SDD21) – as a PCB manufacturing step. The problem is that you have to probe both ends of a trace in order to do this. Not so hard in the lab, but high-volume testers aren’t really built for that – they want to probe in one place.

Two years ago at DesignCon, Intel proposed a new method of determining the insertion loss by taking time-domain measurements at only two points, both at the same end of the line. They called it “Single-Ended TDR to Differential Insertion Loss,” or SET2DIL.

A quick terminology note here: there seems to be inconsistency in the industry about what those test points are called. Some refer to them as two “terminals,” which equate to one “port.” Rhode and Schwartz (and perhaps other) seem to equate “terminal” and “port,” so the kinds of systems we’re talking about here are all four-terminal systems, but may be two-port or four-port systems, depending on your definition of “port.” So the problem being solved here is the ability to test the four-terminal system by measuring only two terminals. And, critically, both of those terminals are at the same end of the two traces that make up the differential pair.

At this year’s DesignCon, SET2DIL appears to be showing up, at least in software form. Rhode and Schwarz was demonstrating, among other things, that their vector network analyzer (VNA) could make the time domain (reflectometry or transmissometry) measurements and then drive them into a computer that ran the SET2DIL algorithm to calculate the differential insertion loss. They say that they’re working to integrate the algorithm into the VNA itself.

Polar Instruments also appears to be supporting SET2DIL in software as of their 2012 Atlas release.

More information on Rhode and Schwarz’s solution can be found in their release.

Leave a Reply

featured blogs
Nov 15, 2019
As we seek to go faster and faster in our systems, heat grows as does the noise from the cooling fans. It is because of this heat and noise, many companies are investigating or switching to submersible cooling (liquid immersion cooling) options. Over the last few years, subme...
Nov 15, 2019
Electronic design is ever-changing to adapt with demand. The industry is currently shifting to incorporate more rigid-flex circuits as the preferred interconnect technology for items that would otherwise be off-board, or require a smaller form factor. Industries like IoT, wea...
Nov 15, 2019
"Ey up" is a cheery multi-purpose greeting that basically means "Hello" and "Hi there" and "How are you?" and "How's things?" all rolled into one....
Nov 15, 2019
[From the last episode: we looked at how intellectual property helps designers reuse circuits.] Last week we saw that, instead of creating a new CPU, most chip designers will buy a CPU design '€“ like a blueprint of the CPU '€“ and then use that in a chip that they'€™re...
Nov 15, 2019
Last week , I visited the Cadathlon@ICCAD event at the 2019 International Conference on Computer Aided Design . It was my first CADathlon and I was quite intrigued , since the organizers webpage... [[ Click on the title to access the full blog on the Cadence Community site. ...