editor's blog
Subscribe Now

From Conductor to Insulator

Graphene is one of those materials under vigorous study for use in future electronics. A single honeycomb layer of carbon atoms, it features high electron mobility but no bandgap, so, on its own, doesn’t work well as a semiconductor.

Add another layer, however, and, as we saw in our note on the next logic gate, interesting things may happen.

In particular, some UC Riverside researchers found that so-called bilayer graphene (BLG), which also has high mobility, can become an insulator once the number of electrons drops far enough. They did this by making a BLG sheet one plate of a capacitor, pulling away electrons. This isn’t a gradual process of conductivity changing linearly as electrons are depleted; at a certain point, there’s a fundamental shift in how the electrons organize themselves.

They go so far as to describe this shift as a form of “symmetry breaking,” which gives mass to particles – and they fancy this as the embodiment of a new quantum particle.

You can find more on what’s either a new particle or just another bit of useful knowledge about how to work with graphene in their unusually explanatory release.

Leave a Reply

featured blogs
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...
Sep 25, 2020
Normally, in May, I'd have been off to Unterschleißheim, a suburb of Munich where historically we've held what used to be called CDNLive EMEA. We renamed this CadenceLIVE Europe and... [[ Click on the title to access the full blog on the Cadence Community site...
Sep 24, 2020
I just saw a video from 2012 in which Jeri Ellsworth is strolling around a Makerfaire flaunting her Commodore 64-based bass guitar....
Sep 24, 2020
Samtec works with system architects in the early stages of their design to create solutions for cable management which provide even distribution of thermal load. Using ultra-low skew twinax cable to route signals over the board is a key performance enabler as signal integrity...

Featured Video

DesignWare MIPI C-PHY/D-PHY IP Performance at 24 Gbps

Sponsored by Synopsys

This video features the DesignWare MIPI C-PHY/D-PHY IP interoperating with an image sensor in C-PHY mode up to 3.5 Gsps per trio and D-PHY mode up to 4.5 Gbps per lane, available in FinFET processes for camera and display applications.

More information about Synopsys DesignWare MIPI C-PHY/D-PHY IP

Featured Paper

4 audio trends transforming the automotive industry

Sponsored by Texas Instruments

The automotive industry is focused on creating a comfortable driving experience – but without compromising fuel efficiency or manufacturing costs. The adoption of these new audio technologies in cars – while requiring major architecture changes – promise to bring a richer driving and in-car communication experience. Discover techniques using microphones, amplifiers, loudspeakers and advanced digital signal processing that help enable the newest trends in automotive audio applications.

Click here to download the whitepaper

Featured Chalk Talk

uPOL Technology

Sponsored by Mouser Electronics and TDK

Power modules are a superior solution for many system designs. Their small form factor, high efficiency, ease of design-in, and solid reliability make them a great solution in a wide range of applications. In this episode of Chalk Talk, Amelia Dalton chats with Tony Ochoa of TDK about the new uPOL family of power modules and how they can deliver the power in your next design.

Click here for more information about TDK FS1406 µPOL™ DC-DC Power Modules