editor's blog
Subscribe Now

A Faster Fourier Transform

We all had to learn about Fourier transforms in college. That scared some of us away to the safe, contained world of digital logic. But many of you carried on with it, and the Fast Fourier Transform (FFT) became one of your basic tools.

In fact, at least in the FPGA world, it became the poster child for, “Look what we can do!” Whether it was IP or C-to-RTL or speed, it was always demonstrated on an FFT. Which makes sense, since many digital signal processing functions were moving into FPGAs for performance.

That worked ok for a while – impressive at first, standard later on, and then… well, apparently it just got old. With erstwhile marketing hats on, I’ve been in meetings that went more like, “OK, so you can do an FFT. Can you do anything serious?”

And so the FFT has become somewhat more like a basic logic gate. Just bigger and less intuitive.

Well, apparently, this logic gate just got faster (FerFT?). MIT announced a new algorithm that promises to be 10 times faster than the current algorithm. They do this by noting that most real-world signals have a few dominant components; their algorithm is most valuable for such “sparse” signals. They divide up the frequency range into slices, each of which has a single dominant component, and then iteratively try to zero in on those primary components.

Apparently we’ll have to wait for the best zeroing-in algorithm; it has yet to be published.

More info in their release

Leave a Reply

featured blogs
Apr 23, 2025
Just when I thought the day was as strange as it could get, I ran across this video'¦...

featured paper

How Google and Intel use Calibre DesignEnhancer to reduce IR drop and improve reliability

Sponsored by Siemens Digital Industries Software

Through real-world examples from Intel and Google, we highlight how Calibre’s DesignEnhancer maximizes layout modifications while ensuring DRC compliance.

Click here for more information

featured chalk talk

Versatile S32G3 Processors for Automotive and Beyond
In this episode of Chalk Talk, Amelia Dalton and Brian Carlson from NXP investigate NXP’s S32G3 vehicle network processors that combine ASIL D safety, hardware security, high-performance real-time and application processing and network acceleration. They explore how these processors support many vehicle needs simultaneously, the specific benefits they bring to autonomous drive and ADAS applications, and how you can get started developing with these processors today.
Jul 24, 2024
91,967 views