editor's blog
Subscribe Now

A Faster Fourier Transform

We all had to learn about Fourier transforms in college. That scared some of us away to the safe, contained world of digital logic. But many of you carried on with it, and the Fast Fourier Transform (FFT) became one of your basic tools.

In fact, at least in the FPGA world, it became the poster child for, “Look what we can do!” Whether it was IP or C-to-RTL or speed, it was always demonstrated on an FFT. Which makes sense, since many digital signal processing functions were moving into FPGAs for performance.

That worked ok for a while – impressive at first, standard later on, and then… well, apparently it just got old. With erstwhile marketing hats on, I’ve been in meetings that went more like, “OK, so you can do an FFT. Can you do anything serious?”

And so the FFT has become somewhat more like a basic logic gate. Just bigger and less intuitive.

Well, apparently, this logic gate just got faster (FerFT?). MIT announced a new algorithm that promises to be 10 times faster than the current algorithm. They do this by noting that most real-world signals have a few dominant components; their algorithm is most valuable for such “sparse” signals. They divide up the frequency range into slices, each of which has a single dominant component, and then iteratively try to zero in on those primary components.

Apparently we’ll have to wait for the best zeroing-in algorithm; it has yet to be published.

More info in their release

Leave a Reply

featured blogs
May 7, 2021
In one of our Knowledge Booster Blogs a few months ago we introduced you to some tips and tricks for the optimal use of Virtuoso ADE Product Suite with our analog IC design videos . W e hope you... [[ Click on the title to access the full blog on the Cadence Community site. ...
May 7, 2021
Enough of the letter “P” already. Message recieved. In any case, modeling and simulating next-gen 224 Gbps signal channels poses many challenges. Design engineers must optimize the entire signal path, not just a specific component. The signal path includes transce...
May 6, 2021
Learn how correct-by-construction coding enables a more productive chip design process, as new code review tools address bugs early in the design process. The post Find Bugs Earlier Via On-the-Fly Code Checking for Productive Chip Design and Verification appeared first on Fr...
May 4, 2021
What a difference a year can make! Oh, we're not referring to that virus that… The post Realize Live + U2U: Side by Side appeared first on Design with Calibre....

featured video

Introduction to EMI

Sponsored by Texas Instruments

Conducted versus radiated EMI. CISPR-25 and CISPR-32 standards. High-frequency or low-frequency emissions. Designing a system to reduce EMI can be overwhelming, but it doesn’t have to be. Watch this video to get an overview of EMI causes, standards, and mitigation techniques.

Click here for more information

featured paper

Compact. Precise. Connected. Increase productivity with intelligent edge computing.

Sponsored by Texas Instruments

Smart devices in factories and buildings are getting smaller and more capable, with enhanced real-time control, robust connectivity, and configurable web services. Read about new processor technology that is unleashing the true potential of Industry 5.0 and the Internet of Things.

Click here to read more

featured chalk talk

Silicon Lifecycle Management (SLM)

Sponsored by Synopsys

Wouldn’t it be great if we could keep on analyzing our IC designs once they are in the field? After all, simulation and lab measurements can never tell the whole story of how devices will behave in real-world use. In this episode of Chalk Talk, Amelia Dalton chats with Randy Fish of Synopsys about gaining better insight into IC designs through the use of embedded monitors and sensors, and how we can enable a range of new optimizations throughout the lifecycle of our designs.

Click here for more information about Silicon Lifecycle Management Platform