editor's blog
Subscribe Now

A Faster Fourier Transform

We all had to learn about Fourier transforms in college. That scared some of us away to the safe, contained world of digital logic. But many of you carried on with it, and the Fast Fourier Transform (FFT) became one of your basic tools.

In fact, at least in the FPGA world, it became the poster child for, “Look what we can do!” Whether it was IP or C-to-RTL or speed, it was always demonstrated on an FFT. Which makes sense, since many digital signal processing functions were moving into FPGAs for performance.

That worked ok for a while – impressive at first, standard later on, and then… well, apparently it just got old. With erstwhile marketing hats on, I’ve been in meetings that went more like, “OK, so you can do an FFT. Can you do anything serious?”

And so the FFT has become somewhat more like a basic logic gate. Just bigger and less intuitive.

Well, apparently, this logic gate just got faster (FerFT?). MIT announced a new algorithm that promises to be 10 times faster than the current algorithm. They do this by noting that most real-world signals have a few dominant components; their algorithm is most valuable for such “sparse” signals. They divide up the frequency range into slices, each of which has a single dominant component, and then iteratively try to zero in on those primary components.

Apparently we’ll have to wait for the best zeroing-in algorithm; it has yet to be published.

More info in their release

Leave a Reply

featured blogs
Dec 8, 2023
Read the technical brief to learn about Mixed-Order Mesh Curving using Cadence Fidelity Pointwise. When performing numerical simulations on complex systems, discretization schemes are necessary for the governing equations and geometry. In computational fluid dynamics (CFD) si...
Dec 7, 2023
Explore the different memory technologies at the heart of AI SoC memory architecture and learn about the advantages of SRAM, ReRAM, MRAM, and beyond.The post The Importance of Memory Architecture for AI SoCs appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

What are the Differences Between an Integrated ADC and a Standalone ADC?
Sponsored by Mouser Electronics and Microchip
Many designs today require some form of analog to digital conversion but how you implement an ADC into your design can make a big difference when it comes to accuracy and precision. In this episode of Chalk Talk, Iman Chalabi from Microchip and Amelia Dalton investigate the benefits of both integrated ADC solutions and standalone ADCs. They discuss the roles that internal switching noise, process technology, and design complexity play when choosing the right ADC solution for your next design.
Apr 17, 2023
27,753 views