editor's blog
Subscribe Now

Kionix IMU News 2

There was more MEMS news today, this time from Kionix, a Cornell spin-off that positions itself among the top 3 providers of accelerometers, along with ST and Bosch.

They announced, among other things, a new accelerator/gyro combo – their first – and a new accelerometer sense element.

Combos aren’t new; we’ve discussed the fact that some integration is monolithic, but not in this case. They use separate chips. Of course, than means that alignment is critical when packaging them together; it’s what they refer to as “bias” (which has nothing to do, in this case, with a voltage). They handle this at three levels: when actually assembling (getting as close to aligned as possible) as well as through compensation both in the accompanying ASIC and in the “fusion software” that they’ve also just announced.

The CMOS ASIC is also on a separate die; they have no specific plans at present to integrate them onto a single chip. They believe that “bringing MEMS and CMOS processes together – remain[s] daunting, particularly when trying to achieve high yields.” They say they can achieve better costs by using separate dice.

Notably, they didn’t include a magnetometer in the combo. They point out that many OEMs are very picky about where the magnetometer should be placed in the system to minimize stray magnetic effects, so it’s likely to be positioned away from the other inertial measurement units (IMUs). Even though they don’t package them together, their fusion software does support magnetometers in the mix.

Interestingly, they say that gyroscopes haven’t really found their killer app yet (as compared to accelerometers, with their massive airbag market). Gyros also pose power problems: accelerometers are passive, but gyros need a vibrating mass to detect angular changes. Keeping the mass in motion takes power, and, typically, the controlling software will power the gyro up and down to conserve power.

As to their new XAC accelerator sense element, they’re being coy about what that is. According to their VP of Engineering, Scott Miller, “I can say that we took a hard look at weaknesses in previous sensor designs.  We dropped parts hundreds of times.  We ran parts through multiple solder reflow cycles.  We wanted to understand what the sources were for any failures or shifts in performance.  Once we knew that, we attacked them by making structural design changes, material changes, and process changes.  The result of this effort is the new XAC sense element.”

You can find out more about their announcements in today’s releases on the combo, low-power gyro, new sense element, and their fusion software.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTekā€™s design process usually relies on human intuition, but with Cadenceā€™s Optimality Intelligent System Explorer and Clarity 3D Solver, theyā€™ve increased design productivity by 75X. The Optimality Explorerā€™s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Unlock the Productivity and Efficiency of a Connected Plant
In this episode of Chalk Talk, Amelia Dalton and Patrick Casey from Schneider Electric explore the multitude of benefits that mobility brings to industrial applications. They investigate how Schneider Electricā€™s Harmony Hub can simplify monitoring and testing, increase operational efficiency and connectivity openness in industrial plants, and how NFC technology can bring new innovation possibilities to IIoT applications.
Apr 23, 2024
446 views