editor's blog
Subscribe Now

A Bit of Memory With Your Logic?

The recent ICCAD show had a session dedicated to MRAM and memristors. Spintec had a presentation on MRAM that went beyond the normal discussion of memory, and proposed a hybrid logic/memory (or logic-in-memory) usage of MRAM cells – or, more precisely, of magnetic tunnel junctions (MTJs).

At the very simplest end of this is a so-called non-volatile flip-flop (NVFF). It normally acts as a standard flip-flop or SRAM cell (with equivalent performance), but on the pull-up end of things are a couple of MTJs oppositely biased. Those can act as a permanently stored state: when an “auto-zero” function is performed using an additional transistor, the FF stops acting like a FF and acts like a sense amp instead. The unbalancing of what is essentially a diff pair biases the circuit in one direction so that, in a few hundred picoseconds, you can restore the stored state. Add a couple transistors needed to provide the heating current for thermally-assisted switching of the MTJs, and you have a way to dynamically change the non-volatile state.

This can help, for example, when powering down a block to save power. Before doing so, if you save the value in the MTJ pair, then the block can save its state and come back up with no loss of memory. Another example of this concept is a non-volatile L2 cache that can be powered-down and restored with no loss.

The Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM) has gone so far as to put together an FPGA where the flip-flops and SRAM cells have been replaced by MTJs. Now, after capturing the FPGA content via a serial stream and storing it in the MTJs, you can have sub-1-ns configuration after power-up from then on – no serial loading.

The logic-in-memory concept embeds MTJs into standard logic circuits. They showed an adder example where two added transistors act as a latch above a current-mode adder. There’s an MTJ in each leg of the adder above the current source. The current source itself is dynamic, being clocked to reduce power.

This all works because the MTJ can be built above the logic rather than next to the logic, as is typical for CMOS or other memory. This allows more seamless mixing of MTJs and logic, and it reduces the distance between logic and computation, improving performance and increasing the opportunities for interconnectivity. The MTJ can be programmed quickly (on the order of 10 ns vs a 2-ns write time for a volatile SRAM bit).

In the adder example, area and performance improved nominally using the hybrid approach, but dynamic power went from over 70 µW to just over 16 µW; standby power went from 0.9 nW to 0 nW (since the current source can be shut off). The only metric that went in the wrong direction was the amount of energy needed to write the cell: it went from 4 pJ in the pure CMOS implementation to almost 7 pJ for the hybrid version – and just over 20 pJ for writing the MTJ.

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

BMP585: Robust Barometric Pressure Sensor
In this episode of Chalk Talk, Amelia Dalton and Dr. Thomas Block from Bosch Sensortec investigate the benefits of barometric pressure sensors for a variety of electronic designs. They examine how the ultra-low power consumption, excellent accuracy and suitability for use in harsh environments can make Bosch’s BMP585 barometric pressure sensors a great fit for your next design.
Oct 2, 2023
25,626 views