editor's blog
Subscribe Now

Another Transistor Goes Vertical

While the recent MEMS Executive Congress focused on electro-mechanical applications, occasionally MEMS processing techniques were highlighted for strictly electrical purposes, with no mechanical component.

In one example, ICEMOS talked about their collaboration with MEMS manufacturer Omron for a new way of making superjunction power transistors.

Superjunction transistors overcome the Ron/breakdown tradeoff issue using alternating p and n stripes. In theory, these can be arranged a number of different ways, but, according to ICEMOS, the typical way it’s done now is horizontally, by growing a series of epitaxial layers of opposite doping. This, they say, is an expensive way of doing things.

Instead, they’ve gone vertical. The way they do this is by etching trenches using DRIE in Omron’s fab. They then use a sidewall implant – which is almost vertical, but tilted ever so gently – to dope the sides of these trenches.

Even though this uses a process that, to a standard CMOS fab, would be non-standard, they say it’s still cheaper than the multi-epi way of doing things. They also say that they can make smaller devices this way.

You can find out more about what they do from this PDF presentation

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general, and employing them to perform masking operations in particular, can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Paper

Cryptography: How It Helps in Our Digital World

Sponsored by Maxim Integrated

Gain a basic understanding of how cryptography works and how cryptography can help you protect your designs from security threats.

Click here to download the whitepaper

Featured Chalk Talk

Why Does a Medical Tool Need Security?

Sponsored by Mouser Electronics and Maxim Integrated

Connected Medical devices require a unique set of security design requirements and a software-only security solution with a non-secure MCU might not be the best way to go. In this episode of Chalk Talk, Amelia Dalton chats with Scott Jones from Maxim Integrated about the details of secure authentication and how we can use the SHA-3 authentication model to get our medical security plan on track.

Click here for more information about Maxim Integrated MAX66240 DeepCover® Secure Authenticator