editor's blog
Subscribe Now

A Different TSV

Through-silicon vias (TSVs) are a key technology for stacking chips in so-called 3D (or 2.5D) configurations. And there’s lots of talk about how to use deep reactive ion etching (DRIE) methods to get a nice deep high-aspect-ratio hole and then fill it with metal to make this connection.

But in a conversation with Silex at the MEMS Executive Congress, they pointed out a different approach they take to TSVs. And, it turns out, this approach has been in production for five years, so it’s not exactly new – yet I haven’t seen it discussed in the mainstream (and maybe that’s just me).

What’s different here is that it’s not a metal via: it’s a silicon via. Which gives rise to the clever name SIL-VIA.

It’s predicated on highly-doped bulk silicon. As a pure-play MEMS company, wafers may have characteristics different from that of CMOS wafers. Instead of etching out the entire hole for a pillar of metal, they etch a border around the hole (typically cylindrical, but it can actually be any shape). They then grow oxide in that gap, which now isolates the silicon remaining inside from that outside.

The inside and outside silicon are still connected, since the etch doesn’t go all the way through the wafer. The central core is “released” by grinding away the back. Now the inside portion is isolated, and can form a ½-1-Ω via. This contrasts with the 10-20 mΩ that are more typical of metal vias.

The primary benefit they tout is that the via is thermally matched to the surrounding bulk material, which they say is a problem with metal vias. They also note, of course, that this has been in production for several years; they claim experience on over 50,000 wafers implementing over 100 different products.

There’s a bit more information mid-page on their technology page

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

Larsen & Toubro Builds Data Centers with Effective Cooling Using Cadence Reality DC Design

Sponsored by Cadence Design Systems

Larsen & Toubro built the world’s largest FIFA stadium in Qatar, the world’s tallest statue, and one of the world’s most sophisticated cricket stadiums. Their latest business venture? Designing data centers. Since IT equipment in data centers generates a lot of heat, it’s important to have an efficient and effective cooling system. Learn why, Larsen & Toubro use Cadence Reality DC Design Software for simulation and analysis of the cooling system.

Click here for more information about Cadence Multiphysics System Analysis

featured paper

Navigating design challenges: block/chip design-stage verification

Sponsored by Siemens Digital Industries Software

Explore the future of IC design with the Calibre Shift left initiative. In this paper, author David Abercrombie reveals how Siemens is changing the game for block/chip design-stage verification by moving Calibre verification and reliability analysis solutions further left in the design flow, including directly inside your P&R tool cockpit. Discover how you can reduce traditional long-loop verification iterations, saving time, improving accuracy, and dramatically boosting productivity.

Click here to read more

featured chalk talk

AI/ML System Architecture Connectivity Solutions
Sponsored by Mouser Electronics and Samtec
In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec investigate a variety of crucial design considerations for AI and ML designs, the role that AI chipsets play in the development of these systems, and why the right connectivity solution can make all the difference when it comes to your machine learning or artificial intelligence design.
Oct 23, 2023
32,988 views