editor's blog
Subscribe Now

A Different TSV

Through-silicon vias (TSVs) are a key technology for stacking chips in so-called 3D (or 2.5D) configurations. And there’s lots of talk about how to use deep reactive ion etching (DRIE) methods to get a nice deep high-aspect-ratio hole and then fill it with metal to make this connection.

But in a conversation with Silex at the MEMS Executive Congress, they pointed out a different approach they take to TSVs. And, it turns out, this approach has been in production for five years, so it’s not exactly new – yet I haven’t seen it discussed in the mainstream (and maybe that’s just me).

What’s different here is that it’s not a metal via: it’s a silicon via. Which gives rise to the clever name SIL-VIA.

It’s predicated on highly-doped bulk silicon. As a pure-play MEMS company, wafers may have characteristics different from that of CMOS wafers. Instead of etching out the entire hole for a pillar of metal, they etch a border around the hole (typically cylindrical, but it can actually be any shape). They then grow oxide in that gap, which now isolates the silicon remaining inside from that outside.

The inside and outside silicon are still connected, since the etch doesn’t go all the way through the wafer. The central core is “released” by grinding away the back. Now the inside portion is isolated, and can form a ½-1-Ω via. This contrasts with the 10-20 mΩ that are more typical of metal vias.

The primary benefit they tout is that the via is thermally matched to the surrounding bulk material, which they say is a problem with metal vias. They also note, of course, that this has been in production for several years; they claim experience on over 50,000 wafers implementing over 100 different products.

There’s a bit more information mid-page on their technology page

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

Featured Chalk Talk

Innovative Hybrid Crowbar Protection for AC Power Lines

Sponsored by Mouser Electronics and Littelfuse

Providing robust AC line protection is a tough engineering challenge. Lightning and other unexpected events can wreak havoc with even the best-engineered power supplies. In this episode of Chalk Talk, Amelia Dalton chats with Pete Pytlik of Littelfuse about innovative SIDACtor semiconductor hybrid crowbar protection for AC power lines, that combine the best of TVS and MOV technologies to deliver superior low clamping voltage for power lines.

More information about Littelfuse SIDACtor + MOV AC Line Protection