editor's blog
Subscribe Now

A Different TSV

Through-silicon vias (TSVs) are a key technology for stacking chips in so-called 3D (or 2.5D) configurations. And there’s lots of talk about how to use deep reactive ion etching (DRIE) methods to get a nice deep high-aspect-ratio hole and then fill it with metal to make this connection.

But in a conversation with Silex at the MEMS Executive Congress, they pointed out a different approach they take to TSVs. And, it turns out, this approach has been in production for five years, so it’s not exactly new – yet I haven’t seen it discussed in the mainstream (and maybe that’s just me).

What’s different here is that it’s not a metal via: it’s a silicon via. Which gives rise to the clever name SIL-VIA.

It’s predicated on highly-doped bulk silicon. As a pure-play MEMS company, wafers may have characteristics different from that of CMOS wafers. Instead of etching out the entire hole for a pillar of metal, they etch a border around the hole (typically cylindrical, but it can actually be any shape). They then grow oxide in that gap, which now isolates the silicon remaining inside from that outside.

The inside and outside silicon are still connected, since the etch doesn’t go all the way through the wafer. The central core is “released” by grinding away the back. Now the inside portion is isolated, and can form a ½-1-Ω via. This contrasts with the 10-20 mΩ that are more typical of metal vias.

The primary benefit they tout is that the via is thermally matched to the surrounding bulk material, which they say is a problem with metal vias. They also note, of course, that this has been in production for several years; they claim experience on over 50,000 wafers implementing over 100 different products.

There’s a bit more information mid-page on their technology page

Leave a Reply

featured blogs
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....
Apr 18, 2024
Analog Behavioral Modeling involves creating models that mimic a desired external circuit behavior at a block level rather than simply reproducing individual transistor characteristics. One of the significant benefits of using models is that they reduce the simulation time. V...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Automotive/Industrial PSoC™ High Voltage (HV) Overview
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Amelia Dalton and Marcelo Williams Silva from Infineon explore the multitude of benefits of Infineon’s PSoC 4 microcontroller family. They examine how the high precision analog blocks, high voltage subsystem, and integrated communication interfaces of these solutions can make a big difference when it comes to the footprint size, bill of materials and functional safety of your next automotive design.
Sep 12, 2023
27,103 views