editor's blog
Subscribe Now

We Won’t Call You; Just Call Us

One of the challenges with sensors is that, at their most fundamental level, all they do is provide some value reflecting whatever it is they’re sensing. If you want to know that value, you have to go get the value. “You” typically being the main processor in the system.

That’s easy enough if it’s something you occasionally do under the direction of a program, but if you want the sensor to alert you when something happens, then you have to poll constantly so that you know when something changed. That can steal a lot of cycles from the processor, and can be a particular issue for smartphones that have lots of sensors.

I had a discussion about this with Bosch Sensortec’s Leopold Beer at the recent MEMS Executive Congress. He said that with their IMUs, polling still dominates, but that they’ve got a state machine in there that can be programmed to fire an interrupt; their interface supports both polling and interrupts.

For example, the unit has an auto-sleep mode, and can be programmed to wake itself up. You can program in thresholds and timing. You can have it fire an interrupt when changing between portrait and landscape modes; the angles and hysteresis levels are programmable. This relieves the application processor of some of the more mundane polling duties.

For more complex tasks like counting the number of steps you take when running, much more processing is required, so for those tasks the processor still has to go poll the sensor and do the data munging itself.

One solution is to have a separate sensor microcontroller that can manage multiple sensors to offload some of the application processor duties in a programmable way.

A dedicated microcontroller on the same die as the sensor might make sense for so-called “sensor fusion” applications – where the “sensed” state isn’t just the result of a single sensor or even sensor type, but the accumulation of data from numerous sensors synthesized into a single combined more “intelligent” state. It’s certainly possible from a technology standpoint; the only question is whether the cost is justified.

Something to watch for as sensors continue to populate the world…

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Battery-free IoT devices: Enabled by Infineon’s NFC Energy-Harvesting
Sponsored by Mouser Electronics and Infineon
Energy harvesting has become more popular than ever before for a wide range of IoT devices. In this episode of Chalk Talk, Amelia Dalton chats with Stathis Zafiriadis from Infineon about the details of Infineon’s NFC energy harvesting technology and how you can get started using this technology in your next IoT design. They discuss the connectivity and sensing capabilities of Infineon’s NAC1080 and NGC1081 NFC actuation controllers and the applications that would be a great fit for these innovative solutions.
Aug 17, 2023
30,001 views