editor's blog
Subscribe Now

We Won’t Call You; Just Call Us

One of the challenges with sensors is that, at their most fundamental level, all they do is provide some value reflecting whatever it is they’re sensing. If you want to know that value, you have to go get the value. “You” typically being the main processor in the system.

That’s easy enough if it’s something you occasionally do under the direction of a program, but if you want the sensor to alert you when something happens, then you have to poll constantly so that you know when something changed. That can steal a lot of cycles from the processor, and can be a particular issue for smartphones that have lots of sensors.

I had a discussion about this with Bosch Sensortec’s Leopold Beer at the recent MEMS Executive Congress. He said that with their IMUs, polling still dominates, but that they’ve got a state machine in there that can be programmed to fire an interrupt; their interface supports both polling and interrupts.

For example, the unit has an auto-sleep mode, and can be programmed to wake itself up. You can program in thresholds and timing. You can have it fire an interrupt when changing between portrait and landscape modes; the angles and hysteresis levels are programmable. This relieves the application processor of some of the more mundane polling duties.

For more complex tasks like counting the number of steps you take when running, much more processing is required, so for those tasks the processor still has to go poll the sensor and do the data munging itself.

One solution is to have a separate sensor microcontroller that can manage multiple sensors to offload some of the application processor duties in a programmable way.

A dedicated microcontroller on the same die as the sensor might make sense for so-called “sensor fusion” applications – where the “sensed” state isn’t just the result of a single sensor or even sensor type, but the accumulation of data from numerous sensors synthesized into a single combined more “intelligent” state. It’s certainly possible from a technology standpoint; the only question is whether the cost is justified.

Something to watch for as sensors continue to populate the world…

Leave a Reply

featured blogs
Jul 20, 2024
If you are looking for great technology-related reads, here are some offerings that I cannot recommend highly enough....

featured video

Larsen & Toubro Builds Data Centers with Effective Cooling Using Cadence Reality DC Design

Sponsored by Cadence Design Systems

Larsen & Toubro built the world’s largest FIFA stadium in Qatar, the world’s tallest statue, and one of the world’s most sophisticated cricket stadiums. Their latest business venture? Designing data centers. Since IT equipment in data centers generates a lot of heat, it’s important to have an efficient and effective cooling system. Learn why, Larsen & Toubro use Cadence Reality DC Design Software for simulation and analysis of the cooling system.

Click here for more information about Cadence Multiphysics System Analysis

featured chalk talk

Gas Monitoring and Metering with Sensirion SFC6000/SFM6000 Solutions
Sponsored by Mouser Electronics and Sensirion
In this episode of Chalk Talk, Amelia Dalton and Negar Rafiee Dolatabadi from Sensirion explore the benefits of Sensirion’s SFM6000 Flow Meter and SFC Flow Controller. They examine how these solutions can be used in a variety of applications and how you can get started using these technologies for your next design.
Jan 17, 2024
26,446 views