editor's blog
Subscribe Now

Getting a Jump on Power Integrity

Apache announced their RTL Power Model (RPM) recently. The idea is that it lets designers understand their power and power integrity issues earlier in the design cycle. “Early,” however, is a relative term. Unlike some technologies that move such estimates to the architectural phase, this moves the capability from post-layout to RTL. That’s not to take anything away from it – they claim it gives designers a six-month jump on the problem.

The way this works involves a number of Apache tools, starting with PowerArtist. Actually, in order for PowerArtist to do its thing, one other piece has to be in place: a so-called PACE model.

A PACE model provides an estimate of a cell’s parasitics for a given technology. It’s done once, along with the development of the cell, and the PACE model becomes part of the designer’s kit.

That PACE model, along with other technology information, then feeds PowerArtist, which looks through the RTL and infers cells for the circuit. Even though no layout has been done, by knowing the cells, you can call up the PACE model and estimate the parasitics and power implications.

You then simulate your design, and PowerArtist creates the RPM. It does this by calculating an estimate of the energy consumed by each cell as it runs and dividing that by the clock period to derive a power-per-cycle metric for each cell. Those are summed together, and, from that, the tool can identify both power peaks and events with rapid current changes (high di/dt).

For each of these types of event, they define a “frame” around it – roughly 10 or so clock cycles, which includes both the lead-up to and follow-up from the event. The RPM consists of these frames, accompanied by various libraries and pieces of proprietary information that can then be delivered to the RedHawk tool.

With this information, RedHawk will build a current waveform for each clock cycle in each frame. With that waveform, you can use RedHawk to play with early power grid ideas or to start working on chip/package co-design issues, focusing only on those events known to be a challenge.

So this lets you get started dealing with potential power integrity issues long before the layout is available to give you exact results. Obviously, the analysis will need to be repeated for confirmation when the layout is ready, but, hopefully, by then, the major issues will already have been addressed.

More info in their release

Leave a Reply

featured blogs
Nov 13, 2019
At the third stroke of midnight on 30 September 2019, Australia's talking clock fell silent....
Nov 13, 2019
By Elven Huang – Mentor, A Siemens Business SRAM debugging at advanced nodes is challenging. With pattern matching and similarity checking, Calibre tools enable designers to more quickly and precisely locate SRAM modification errors and determine the correct fix. Static...
Nov 13, 2019
Decisions, Decisions … I may be in the market for a new car in the near future. Unless you'€™ve got a strong preference (and most car buyers DO have a strong preference, IMO), choosing a vehicle is a series of trade-offs.  Fuel efficiency vs. horsepower. Functionali...
Nov 13, 2019
One of the big trends that has been happening somewhat below the radar is the growth of various forms of 3D packaging. I noted this at HOT CHIPS in summer, when a big percentage of the designs were... [[ Click on the title to access the full blog on the Cadence Community sit...
Nov 8, 2019
[From the last episode: we looked at the differences between computing at the edge and in the cloud.] We'€™ve looked at the differences between MCUs and SoCs, but the one major thing that they have in common is that they have a CPU. Now'€¦ anyone can define their own CPU ...