editor's blog
Subscribe Now

Piezo… what?

The piezoelectric effect is pretty straightforward. With certain crystals, if you apply strain, the separation of dipoles in the crystal will set up a piezopotential.

Let’s take that one step further by making contacts on either end of a nanowire made of an appropriate material – in particular, ZnO, but potentially other so-called “wurtzite” semiconductors. Put a potential across is and use mechanical stress in the nanowire to modulate the current: you’ve basically got a FET, with the nanowire acting as a mechanical gate.

Those contacts are Schottky contacts, and the strain allows the Schottky barrier to be raised. But if you shine an appropriate laser on the contact, you can create electron-hole pairs, lowering the Schottky barrier, and even making the contact Ohmic instead.

This three-way interplay between the piezopotential created by strain, the optical excitation, and the transport properties of the semiconductor is referred to as piezophototronics. Say it slowly until you get used to it so you don’t hurt yourself.

How is that useful? Well, for one thing, it can be used, as was just demonstrated at Georgia Tech, to increase the performance of a GaN LED by forming a junction between a GaN film and a ZnO nanowire. The interface formed a p-n junction, with the GaN being the p side and the nanowire being the n side.

By straining the nanowire, they could tune the charge transport and effectively increase the rate of electron-hole recombination, increasing the overall efficiency by 4 times.

That’s the condensed version, the bottom line. You can get more details in their recent release.

Leave a Reply

featured blogs
Mar 28, 2024
The difference between Olympic glory and missing out on the podium is often measured in mere fractions of a second, highlighting the pivotal role of timing in sports. But what's the chronometric secret to those photo finishes and record-breaking feats? In this comprehens...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

Portenta C33
Sponsored by Mouser Electronics and Arduino and Renesas
In this episode of Chalk Talk, Marta Barbero from Arduino, Robert Nolf from Renesas, and Amelia Dalton explore how the Portenta C33 module can help you develop cost-effective, real-time applications. They also examine how the Arduino ecosystem supports innovation throughout the development lifecycle and the benefits that the RA6M5 microcontroller from Renesas brings to this solution.  
Nov 8, 2023
18,650 views