editor's blog
Subscribe Now

Piezo… what?

The piezoelectric effect is pretty straightforward. With certain crystals, if you apply strain, the separation of dipoles in the crystal will set up a piezopotential.

Let’s take that one step further by making contacts on either end of a nanowire made of an appropriate material – in particular, ZnO, but potentially other so-called “wurtzite” semiconductors. Put a potential across is and use mechanical stress in the nanowire to modulate the current: you’ve basically got a FET, with the nanowire acting as a mechanical gate.

Those contacts are Schottky contacts, and the strain allows the Schottky barrier to be raised. But if you shine an appropriate laser on the contact, you can create electron-hole pairs, lowering the Schottky barrier, and even making the contact Ohmic instead.

This three-way interplay between the piezopotential created by strain, the optical excitation, and the transport properties of the semiconductor is referred to as piezophototronics. Say it slowly until you get used to it so you don’t hurt yourself.

How is that useful? Well, for one thing, it can be used, as was just demonstrated at Georgia Tech, to increase the performance of a GaN LED by forming a junction between a GaN film and a ZnO nanowire. The interface formed a p-n junction, with the GaN being the p side and the nanowire being the n side.

By straining the nanowire, they could tune the charge transport and effectively increase the rate of electron-hole recombination, increasing the overall efficiency by 4 times.

That’s the condensed version, the bottom line. You can get more details in their recent release.

Leave a Reply

featured blogs
Oct 14, 2019
Simon Segars opened Arm TechCon with a new look, having discovered that real men have beards. This is the 15th Arm TechCon. In this post I'm going to focus on the new things that Arm announced... [[ Click on the title to access the full blog on the Cadence Community sit...
Oct 13, 2019
In part 3 of this blog series we looked at what typically is the longest stage in designing a PCB Routing and net tuning.  In part 4 we will finish the design process by looking at planes, and some miscellaneous items that may be required in some designs. Planes Figure 8...
Oct 11, 2019
The FPGA (or ACAP) universe gathered at the San Jose Fairmount last week during the Xilinx Developer Forum. Engineers, data scientists, analysts, distributors, alliance partners and more came to learn about the latest hardware, software and system level solutions from Xilinx....
Oct 11, 2019
Have you ever stayed awake at night pondering palindromic digital clock posers?...
Oct 11, 2019
[From the last episode: We looked at subroutines in computer programs.] We saw a couple weeks ago that some memories are big, but slow (flash memory). Others are fast, but not so big '€“ and they'€™re power-hungry to boot (SRAM). This sets up an interesting problem. When ...