editor's blog
Subscribe Now

Not All Logic Stages Need to Be Equal

I had a conversation with Cadence at ARM TechCon, and one of the things they’re talking about is what they call clock/data co-optimization as an alternative to traditional synchronous logic optimization.

Typically, designers work hard to make sure each logic stage in the overall logic pipeline can be implemented in the time required before the next clock arrives. Some stages have more logic than others, and you have to spend more time on those ones to get the speed right.

Meanwhile, someone spends a lot of effort synthesizing a clock tree that’s balanced and homogeneous and gets a strobe to each register at the same time.

But Cadence’s point is, it doesn’t have to be that way. What if you borrowed from the easy logic stages to cut the hard logic stages more slack? Then the clock could arrive a bit early at the hard logic stage so that it would have more time to get the hard logic done. You might be able to use smaller or fewer buffers, reducing logic and power.

This means that different stages may have different delays, and, most unconventionally, that clocks might arrive at different times in different places. (Which actually isn’t such a bad thing from an EMI standpoint.)

By doing this, they found that a particular ARM A9 design gained 40 MHz of performance while lowering dynamic power by 10.4% and clock area (and hence leakage) by 31%. A complete win win.

Leave a Reply

featured blogs
Jan 27, 2021
Why is my poor old noggin filled with thoughts of roaming with my friends through a post-apocalyptic dystopian metropolis ? Well, I'€™m glad you asked......
Jan 27, 2021
Here at the Cadence Academic Network, it is always important to highlight the great work being done by professors, and academia as a whole. Now that AWR software solutions is a part of Cadence, we... [[ Click on the title to access the full blog on the Cadence Community site...
Jan 27, 2021
Super-size. Add-on. Extra. More. We see terms like these a lot, whether at the drive through or shopping online. There'€™s always something else you can add to your order or put in your cart '€“ and usually at an additional cost. Fairly certain at this point most of us kn...
Jan 27, 2021
Cloud computing security starts at hyperscale data centers; learn how embedded IDE modules protect data across interfaces including PCIe 5.0 and CXL 2.0. The post Keeping Hyperscale Data Centers Safe from Security Threats appeared first on From Silicon To Software....

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

featured chalk talk

Accelerating Physical Verification Productivity

Sponsored by Synopsys

Physical verification of IC designs at today’s advanced process nodes requires an immense amount of processing power. But, getting your design and verification tools to take full advantage of the compute resources available can be a challenge. In this episode of Chalk Talk, Amelia Dalton chats with Manoz Palaparthi of Synopsys about dramatically improving the performance of your physical verification process. 

Click here for more information about Physical Verification using IC Validator