editor's blog
Subscribe Now

Not All Logic Stages Need to Be Equal

I had a conversation with Cadence at ARM TechCon, and one of the things they’re talking about is what they call clock/data co-optimization as an alternative to traditional synchronous logic optimization.

Typically, designers work hard to make sure each logic stage in the overall logic pipeline can be implemented in the time required before the next clock arrives. Some stages have more logic than others, and you have to spend more time on those ones to get the speed right.

Meanwhile, someone spends a lot of effort synthesizing a clock tree that’s balanced and homogeneous and gets a strobe to each register at the same time.

But Cadence’s point is, it doesn’t have to be that way. What if you borrowed from the easy logic stages to cut the hard logic stages more slack? Then the clock could arrive a bit early at the hard logic stage so that it would have more time to get the hard logic done. You might be able to use smaller or fewer buffers, reducing logic and power.

This means that different stages may have different delays, and, most unconventionally, that clocks might arrive at different times in different places. (Which actually isn’t such a bad thing from an EMI standpoint.)

By doing this, they found that a particular ARM A9 design gained 40 MHz of performance while lowering dynamic power by 10.4% and clock area (and hence leakage) by 31%. A complete win win.

Leave a Reply

featured blogs
Dec 7, 2022
By Karen Chow When Infineon needed to select a field solver for the development of their next-generation power semiconductor products,… ...
Dec 6, 2022
Join our live webinar next Tuesday to learn more about this subject. Introduction Despite the evolution of computer processing capability, improving the efficiency of numerical simulations remains critical. In CFD simulations, the key factor impacting solution quality is mesh...
Dec 6, 2022
Explore quantum computing's impact on cryptography and learn how to prepare SoC designs for post-quantum computing and evolving cryptographic standards. The post Why Now Is the Time to Address Quantum Computing's Impact on Cryptography appeared first on From Silicon To Softw...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Unique AMS Emulation Technology

Sponsored by Synopsys

Learn about Synopsys' collaboration with DARPA and other partners to develop a one-of-a-kind, high-performance AMS silicon verification capability. Please watch the video interview or read it online.

Read the interview online:

featured chalk talk

ActiveCiPS™: Configurable Intelligent Power Management Solutions

Sponsored by Mouser Electronics and Qorvo

Programmable power management can not only help us manage our power systems but it can also have size, weight, and cost benefits as well. In this episode of Chalk Talk, Amelia Dalton chats with Yael Coleman from Qorvo about the system-wide benefits of configurable power management solutions. They investigate the programmable features of the ActiveCips configurable intelligent power management solutions and review how these solutions can help you balance weight, size, power and cost in your next design.

Click here for more information about Qorvo ACT41000 Low Noise DC-to-DC Buck Converter