editor's blog
Subscribe Now

Not All Logic Stages Need to Be Equal

I had a conversation with Cadence at ARM TechCon, and one of the things they’re talking about is what they call clock/data co-optimization as an alternative to traditional synchronous logic optimization.

Typically, designers work hard to make sure each logic stage in the overall logic pipeline can be implemented in the time required before the next clock arrives. Some stages have more logic than others, and you have to spend more time on those ones to get the speed right.

Meanwhile, someone spends a lot of effort synthesizing a clock tree that’s balanced and homogeneous and gets a strobe to each register at the same time.

But Cadence’s point is, it doesn’t have to be that way. What if you borrowed from the easy logic stages to cut the hard logic stages more slack? Then the clock could arrive a bit early at the hard logic stage so that it would have more time to get the hard logic done. You might be able to use smaller or fewer buffers, reducing logic and power.

This means that different stages may have different delays, and, most unconventionally, that clocks might arrive at different times in different places. (Which actually isn’t such a bad thing from an EMI standpoint.)

By doing this, they found that a particular ARM A9 design gained 40 MHz of performance while lowering dynamic power by 10.4% and clock area (and hence leakage) by 31%. A complete win win.

Leave a Reply

featured blogs
Dec 5, 2023
Introduction PCIe (Peripheral Component Interconnect Express) is a high-speed serial interconnect that is widely used in consumer and server applications. Over generations, PCIe has undergone diversified changes, spread across transaction, data link and physical layers. The l...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured webinar

Rapid Learning: Purpose-Built MCU Software Tools for Data-Driven Embedded IoT Systems

Sponsored by ITTIA

Are you developing an MCU application that captures data of all kinds (metrics, events, logs, traces, etc.)? Are you ready to reduce the difficulties and complications involved in developing an event- and data-centric embedded system? This webinar will quickly introduce you to excellent MCU-specific software options for developing your next-generation data-driven IoT systems. You will also learn how to recognize and overcome data management obstacles. Register today as seats are limited!

Register Now!

featured chalk talk

Energy Storage Systems
Increasing electric vehicle sales, decreasing battery sales, and a shift in energy consumption has made energy storage systems more important than ever before. In this episode of Chalk Talk, Amelia Dalton chats with Gijs Werner from Amphenol FCI Basics about the functions and components involved in commercial energy storage systems, residential energy storage systems and EV charging stations. They investigate the qualifications needed for connectors in energy storage systems and what kind of connectors Amphenol FCI Basics offers for your next energy storage system design.
Apr 3, 2023
29,068 views