editor's blog
Subscribe Now

Write Once, Read Many

When a foundry prepares a process for a designer to use, it’s got to communicate how that process works and how it can be used. Which has to be couched in terms that an EDA tool can use.

Problem is, each foundry has its parameters and such, and each EDA tool has its formats and such. The same information ends up getting done and redone and redone in order to cover all the players.

There have been efforts to corral this to some extent by TSMC (at the very least) with their ixxx (e.g., iDRC) efforts, but those have been “proprietary” even if developed in a more open way.

Si2 is attempting to reconcile this all in their OpenPDK project, which has been underway for quite a while. It’s really a nested effort, incorporating other DRC, DFM, and parametric extraction (PEX, as embodied in their OPEX effort, which shouldn’t be confused as contrasting with CAPEX) projects, to name a few.

This all comes together as a big XML schema that forms an Open Process Specification (OPS). As described at Si2’s recent tech conference, work groups are busily defining parameters and symbols and callbacks and such. The end goal of this, anticipated around the end of 2012, is that automation will allow a single populated OPS to generate the PDKs needed for any of the EDA tools. This separates the information content from the format, the OPS containing the content and a filter essentially skinning it for the EDA tools.

It is noteworthy that the word “open” appears in this context. Things have been gradually changing, but imagine if ten years ago you suggested that the foundries open up… well… anything. Would have been worth a chuckle then, so it represents quite the change of heart that this effort looks to be successful in the not-too-distant future. More on that in a few days…

Leave a Reply

featured blogs
May 27, 2020
Could life evolve on ice worlds, ocean worlds, ocean worlds covered in ice, halo worlds that are tidally locked with their sun, and rogue worlds without a sun? If so, what sort of life might it be?...
May 26, 2020
I get pleasure from good quality things. Quality is a vague term, but, to me, it is some combination of good design for usability, functionality and aesthetics, along with reliability and durability. Some of these factors can be assessed very quickly; others take time. For ex...
May 26, 2020
#robotcombat #combatrobots #robotwars #WeWantSeason5 #WeGotSeason5 These are some of the most popular hashtags used by a growing number of global BattleBots enthusiasts. Teams from all backgrounds design, build and test robots of all sizes for one purpose in mind: Robot Comba...
May 22, 2020
[From the last episode: We looked at the complexities of cache in a multicore processor.] OK, time for a breather and for some review. We'€™ve taken quite the tour of computing, both in an IoT device (or even a laptop) and in the cloud. Here are some basic things we looked ...

Featured Video

DesignWare 112G Ethernet PHY IP Insertion Loss Capabilities

Sponsored by Synopsys

This video shows the performance results of the Synopsys 112G PHY receiver to varying amounts of channel insertion loss. The IP meets the standards requirements. With leading power, performance, and area, the IP is available in a range of FinFET processes for high-performance.

Click here for more information

Featured Paper

High-Efficiency Boost Converter Extends Wearable Medical Patch Battery Life

Sponsored by Maxim Integrated

Wearable medical devices are transforming the healthcare industry by continuously recording and transmitting the patient state of health. They must be unobstructive and last several days relying on small, disposable batteries. This design solution reviews the shortcomings of a typical power management solution for wearable medical patches and introduces a new, high-efficiency, low-quiescent boost converter that meets the specified operating life.

Click here to download the whitepaper