editor's blog
Subscribe Now

Yield Correlations Get Continued Focus

Yield enhancement has never been easy, but it just keeps getting harder as process technologies get more complex. Figuring out where you’re losing dice actually takes a lot of number crunching and correlation between widely disparate types of data.

First you’ve got your basic yield information as embodied in a wafer map. But one wafer doesn’t a trend make; it takes lots to develop the statistics to suggest where systematic problems might lie.

Isolating a particular type of failure, you can then do things like figure out what possible causes might be – which requires both information on the failure mode and access to the design – and a further narrowing down based on the physical layout of the design, which requires a picture of the layout.

All under the guidance of a skilled engineer, of course.

Mentor announced what they called “DFM-aware diagnosis-driven yield analysis.” As you might guess, the focus here is on DFM issues. Unlike strict DRC rules that must pass, DFM rules are more “suggestions.” You may well end up with some that didn’t pass. But if you get systematic yield loss, the obvious question becomes, was that because of some of the DFM rules we blew off?

The Tessent DFM-aware analysis looks for correlations between failures and failed DFM rules. If you find some, you can decide whether to make changes so that they pass. On the other hand, there may be none that correlate: you may actually decide that a new DFM rule is required to fix the observed failures. So you can also test with the new DFM rule to see if there’s a correlation between that and the failure before adding the rule.

Synopsys, meanwhile, announced enhanced yield diagnostics and, in particular, tools to improve memory yields through similar kinds of correlation techniques. They show a loop between the design, from which vectors are generated and sent to the tester, and from which results are gathered. Those results are combined with the original design information in their STAR Silicon Debugger, from which maps of failing bits as well as the physical coordinates of those failures can be derived. From there, and engineer can look for actual failure mechanisms.

More info in the Mentor and Synopsys press releases…

Leave a Reply

featured blogs
Jul 9, 2020
I just read '€œEmpty World'€ by John Christopher, and I'€™m sure you will be as amazed as I to discover that this book has a hint of a sniff of the post-apocalyptic about it....
Jul 9, 2020
It happens all the time. We'€™re online with a designer and we'€™re looking at a connector in our picture search. He says '€œI need a connector that looks just like this one, but '€¦'€ and then he goes on to explain something he needs that'€™s unique to his desig...
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Chalk Talk

Amplifiers & Comparators Designed for Low Power, Precision

Sponsored by Mouser Electronics and ON Semiconductor

When choosing amplifiers and comparators for low-power, high-precision applications, it pays to have a broad understanding of the latest technology in op amps. There are new types of devices with significant advantages over the traditional go-to parts. In this episode of Chalk Talk, Amelia Dalton chats with Namrata Pandya of ON Semiconductor about choosing the best op amp for your application.

Click here for more information about ON Semiconductor High Performance CMOS Operational Amplifiers