editor's blog
Subscribe Now

Micron’s Memory Cube

Micron Technology, America’s one-and-only memory manufacturer, has come up with a cool and unusual new type of memory chip. Well, it’s not really a chip. It’s more like a module. It’s a cube, actually.

The company calls it a “hybrid memory cube” (HMC) and it starts out as a set of stacked die within one package. That’s not terribly unusual in itself; plenty of companies have stacked two or more silicon dice on top of each other, and the technique is especially useful for memories. But the HMCs use TSVs (through-silicon vias) to connect the chips together, a fairly cutting edge technology.

Micron didn’t stop there. The company also moved the memory controller, which is typically part of the CPU or the system logic, onto the memory cube itself. (Which is not really cube-shaped, by the way.) By putting the memory controller on the memory module, the HMC acts as a sort of shared system resource, able to arbitrate and manage multiple memory requests from multiple masters (CPUs, DMAs, etc.)

Finally, Micron’s HMC has its own special serial interface, which is both fast and low-power. The high-speed serial interface also keeps the pin count low; lower than a big parallel interface would be, anyway. The trouble with any new interface, however, is that it needs to be supported by the chips on the other end. So far, Micron is the only company using this interface but one assumes that they’ve been lobbying other chip makers to adopt it as well.

HMC’s are intended for high-performance systems that need a lot of memory and a lot of bandwidth. Web servers and network storage come to mind. If these news HMCs catch on, they could be a designer’s best way to pack fast, dense memory into embedded systems.

 

Leave a Reply

featured blogs
Sep 23, 2020
CadenceLIVE 2020 India, our first digital conference held on 9-10 September and what an event it was! With 75 technical paper presentations, four keynotes, a virtual exhibition area, and fun... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 22, 2020
If you are at all interested in digital signal processing (DSP), then the DSP Online Conference is the place to '€œsee and be seen'€ -- register now before all the good seats are snapped up!...
Sep 22, 2020
I am a child of the 80s.  I grew up when the idea of home computing was very new.  My first experience of any kind of computer was an Apple II that my Dad brought home from work. It was the only computer his company possessed, and every few weeks he would need to cr...
Sep 18, 2020
[From the last episode: We put the various pieces of a memory together to show the whole thing.] Before we finally turn our memory discussion into an AI discussion, let'€™s take on one annoying little detail that I'€™ve referred to a few times, but have kept putting off. ...

Featured Video

AI SoC Chats: Primitive Math IP for AI

Sponsored by Synopsys

Learn about the market trends and challenges around primitive math functions (floating point and integer math) in AI chipset development, and how DesignWare IP can help.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

Designing highly efficient, powerful and fast EV charging stations

Sponsored by Texas Instruments

Scaling the necessary power for fast EV charging stations can be challenging. One solution is to use modular power converters stacked in parallel.

Learn More in our technical article

Featured Chalk Talk

uPOL Technology

Sponsored by Mouser Electronics and TDK

Power modules are a superior solution for many system designs. Their small form factor, high efficiency, ease of design-in, and solid reliability make them a great solution in a wide range of applications. In this episode of Chalk Talk, Amelia Dalton chats with Tony Ochoa of TDK about the new uPOL family of power modules and how they can deliver the power in your next design.

Click here for more information about TDK FS1406 µPOL™ DC-DC Power Modules