editor's blog
Subscribe Now

Micron’s Memory Cube

Micron Technology, America’s one-and-only memory manufacturer, has come up with a cool and unusual new type of memory chip. Well, it’s not really a chip. It’s more like a module. It’s a cube, actually.

The company calls it a “hybrid memory cube” (HMC) and it starts out as a set of stacked die within one package. That’s not terribly unusual in itself; plenty of companies have stacked two or more silicon dice on top of each other, and the technique is especially useful for memories. But the HMCs use TSVs (through-silicon vias) to connect the chips together, a fairly cutting edge technology.

Micron didn’t stop there. The company also moved the memory controller, which is typically part of the CPU or the system logic, onto the memory cube itself. (Which is not really cube-shaped, by the way.) By putting the memory controller on the memory module, the HMC acts as a sort of shared system resource, able to arbitrate and manage multiple memory requests from multiple masters (CPUs, DMAs, etc.)

Finally, Micron’s HMC has its own special serial interface, which is both fast and low-power. The high-speed serial interface also keeps the pin count low; lower than a big parallel interface would be, anyway. The trouble with any new interface, however, is that it needs to be supported by the chips on the other end. So far, Micron is the only company using this interface but one assumes that they’ve been lobbying other chip makers to adopt it as well.

HMC’s are intended for high-performance systems that need a lot of memory and a lot of bandwidth. Web servers and network storage come to mind. If these news HMCs catch on, they could be a designer’s best way to pack fast, dense memory into embedded systems.

 

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

AI SoC Chats: Understanding Compute Needs for AI SoCs

Sponsored by Synopsys

Will your next system require high performance AI? Learn what the latest systems are using for computation, including AI math, floating point and dot product hardware, and processor IP.

Click here for more information about DesignWare IP for Amazing AI

featured paper

MAX22005 Universal Analog Input Enables Flexible Industrial Control Systems

Sponsored by Analog Devices

This application note provides information to help system engineers develop extremely precise, highly configurable, multi-channel industrial analog input front-ends by utilizing the MAX22005.

Click here to read more

featured chalk talk

Industrial CbM Solutions from Sensing to Actionable Insight

Sponsored by Mouser Electronics and Analog Devices

Condition based monitoring (CBM) has been a valuable tool for industrial applications for years but until now, the adoption of this kind of technology has not been very widespread. In this episode of Chalk Talk, Amelia Dalton chats with Maurice O’Brien from Analog Devices about how CBM can now be utilized across a wider variety of industrial applications and how Analog Device’s portfolio of CBM solutions can help you avoid unplanned downtime in your next industrial design.

Click here for more information about Analog Devices Inc. Condition-Based Monitoring (CBM)