editor's blog
Subscribe Now

A Step Up

One of the challenges of TSVs is that they’re deeper than other vias and features. Drilling those babies uses deep reactive ion etching (DRIE), which we discussed in our MEMS article earlier in the year. The Bosch process, in particular, consists of a series of etch and clean steps that can leave scalloped sidewalls and other rough features that can be hard to cover properly when filling with metal.

French company Alchimer, which focuses on chemical deposition of “nanometric films” for a variety of leading technologies, has announced a new barrier layer that they say guarantees 100% step coverage. The material is NiB, in contrast to the more traditional TaN and TiN, which, they claim, tend to be used mostly because of their compatibility with standard chemical and plasma vapor deposition (CVD and PVD) processes.

They claim that the NiB has barrier properties similar to TiN and copper, while having diffusion characteristics similar to Ta and TaN. But it also allows the subsequent copper to be filled without requiring a seed layer. The sum total of these benefits is said to save a number of cleaning and other miscellaneous process steps that are currently required, reducing cost.

They call their general process “electrografting”: they deposit a thin layer onto a non-conductive substrate using a water-based process that has molecules from liquid organic precursors of the film layer bonding to the electrons in the substrate. These precursors act as seeds for the rest of the layer.

More info in their release

Leave a Reply

featured blogs
Jan 31, 2023
At CadenceLIVE Europe last year, Ludwig Nordstrom of AWS presented Scaling to 1 Million+ Core to Reduce Time to Results, with up to 90% Discount on Compute Costs . I think that there are currently two trends in EDA infrastructure that cut across almost all design tools. They ...
Jan 30, 2023
By Hossam Sarhan Work smarter, not harder. Isn't that what everyone is always telling you? Of course, it's excellent advice,… ...
Jan 24, 2023
We explain embedded magnetoresistive random access memory (eMRAM) and its low-power SoC design applications as a non-volatile memory alternative to SRAM & Flash. The post Why Embedded MRAMs Are the Future for Advanced-Node SoCs appeared first on From Silicon To Software...
Jan 19, 2023
Are you having problems adjusting your watch strap or swapping out your watch battery? If so, I am the bearer of glad tidings....

featured video

Synopsys 224G & 112G Ethernet PHY IP OIF Interop at ECOC 2022

Sponsored by Synopsys

This Featured Video shows four demonstrations of the Synopsys 224G and 112G Ethernet PHY IP long and medium reach performance, interoperating with third-party channels and SerDes.

Learn More

featured chalk talk

Current Sense Resistor - WFC & WFCP Series

Sponsored by Mouser Electronics and Vishay

If you are working on a telecom, consumer or industrial design, current sense resistors can give you a great way to detect and convert current to voltage. In this episode of Chalk Talk, Amelia Dalton chats with Clinton Stiffler from Vishay about the what, where and how of Vishay’s WFC and WFCP current sense resistors. They investigate how these current sense resistors are constructed, how the flip-chip design of these current sense resistors reduces TCR compared to other chip resistors, and how you can get started using a Vishay current sense resistor in your next design.

Click here for more information about Vishay / Dale WFC/WFCP Metal Foil Current Sense Resistors