editor's blog
Subscribe Now

Safe Processing

When we recently looked at software and hardware safety standards, much of the discussion was focused on process-oriented standards like DO-254 and DO-178. But we also mentioned some other standards without going into detail. And some of those operate on the concept of “safety integrity level,” or SIL.

The origin of this concept is IEC 61508, which establishes four SILs, numbered 1-4, with 4 indicating the “safest” level. The determination of SIL appears to be relatively complex and somewhat ambiguous since the specific failure modes must be identified for each individual system, and are not codified in IEC 61508. They involve both process considerations as well as the Probability of Failure on Demand, or PFD,  (or its inverse, the Risk Reduction Factor, or RRF).

It’s actually pretty easy to understand the PFD ranges for each SIL: it’s the maximum number of zeros after the decimal for the PFD (or the minimum number of zeros in the RRF). So SIL 1 applies to a PFD of 0.1 to 0.01 (or an RRF of 10 to 100); SIL 4 applies to a PFD of 0.0001-0.00001 (or an RRF of 10,000-100,000).

ISO 26262 has a similar concept for automobiles, referring to Automotive SILs, or ASILs.

Only systems can achieve a SIL level; components may tout a SIL level, but simply using such components (or a process known to have achieved a certain SIL level on a different product) is not sufficient to demonstrate that SIL level. So, for instance, when TI just announced their Hercules microcontrollers, they didn’t say that “these  microcontrollers conform to SIL x.” They listed a series of features that are specifically designed to help a designer achieve a desired SIL or ASIL.

Because these standards don’t call out specific functional requirements, only probabilities of failure and process requirements, the feature list itself can’t be expressly correlated with specifics of the standard. Again, they’re simply things that are known to allow the implementation of safer systems.

More details and the specific features can be found in TI’s release

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

AI SoC Chats: Understanding Compute Needs for AI SoCs

Sponsored by Synopsys

Will your next system require high performance AI? Learn what the latest systems are using for computation, including AI math, floating point and dot product hardware, and processor IP.

Click here for more information about DesignWare IP for Amazing AI

featured paper

nanoPower Module Extends Battery Life in Space-Constrained Applications

Sponsored by Analog Devices

Designers can now increase battery life and reduce size in space-constrained IoT devices with a power module that features the lowest quiescent current compared to competitive solutions and uSLIC built-in inductor technology that reduces solution size by up to 37%.

Read Now

featured chalk talk

Flexible Power for a Smart World

Sponsored by Mouser Electronics and CUI Inc.

Safety, EMC compliance, your project schedule, and your BOM cost are all important factors when you are considering what power supply you will need for your next design. You also need to think about form factor, which capacitor will work best, and more. But if you’re not a power supply expert, this can get overwhelming in a hurry. In this episode of Chalk Talk, Amelia Dalton chats with Ron Stull from CUI Inc. about CUI PBO Single Output Board Mount AC-DC Power Supplies, what this ac/dc core brings to the table in terms of form factor, reliability and performance, and why this kind of solution may give you the flexibility you need to optimize your next design.

Click here for more information about CUI Inc PBO Single Output Board Mount AC-DC Power Supplies