editor's blog
Subscribe Now

A new way to do metal

I noticed an interesting release courtesy of Leti, the French research consortium. It concerns a new way of depositing metal that looks so easy that it clearly must not be (or else everyone would have been doing it).

Copper has become the standard metal for logic processes. It uses a series of standard photolithographic steps to deposit, pattern, and etch the metal. The problem is that the cost of this process has been prohibitive for other smaller non-logic chips whose price can’t support such a process.

A French company, Replisaurus, has developed a completely different way of depositing metal, and it requires no photolithography at all. Instead, a template is formed for the metal pattern. The template consists of a mask-like wafer within which the metal pattern has been etched to form trenches.

When used, these trenches are filled with metal, so the patterning for the entire wafer is already in place. A seed layer is deposited on the silicon wafer, and then the template is placed on the wafer. The template and the wafer act as electrodes, and the metal in the template is “sucked” onto the wafer, depositing the entire pattern in one go.

A bit of etching gets rid of the unwanted portions of the seed layer, and you’re good to go.

This saves a lot of processing steps as well as avoiding the issues surrounding photolithography. But they also make one more claim that’s a bit surprising (and, so far, my request for clarification has gone unanswered): they say no CMP is needed. It’s hard to imagine the metal going down smoothly on a rough substrate – especially on top of other layers of metal. There must be something I’m missing there…

More info and pointers on Leti’s release

Leave a Reply

featured blogs
Sep 23, 2020
The great canning lid shortage of 75, the great storm of 87, the great snow of 54, the great freeze of 48... will we one day be talking about the great toilet roll shortage of 2020?...
Sep 23, 2020
CadenceLIVE 2020 India, our first digital conference held on 9-10 September and what an event it was! With 75 technical paper presentations, four keynotes, a virtual exhibition area, and fun... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 22, 2020
I am a child of the 80s.  I grew up when the idea of home computing was very new.  My first experience of any kind of computer was an Apple II that my Dad brought home from work. It was the only computer his company possessed, and every few weeks he would need to cr...
Sep 18, 2020
[From the last episode: We put the various pieces of a memory together to show the whole thing.] Before we finally turn our memory discussion into an AI discussion, let'€™s take on one annoying little detail that I'€™ve referred to a few times, but have kept putting off. ...

Featured Video

AI SoC Chats: IP for In-Memory / Near-Memory Compute

Sponsored by Synopsys

AI chipsets are data hungry and have high compute intensity, leading to potential power consumption issues. Join Synopsys Fellow Jamil Kawa to learn how in-memory or near-memory compute, 3D stacking, and other innovations can address the challenges of making chips think like the human brain.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

Designing highly efficient, powerful and fast EV charging stations

Sponsored by Texas Instruments

Scaling the necessary power for fast EV charging stations can be challenging. One solution is to use modular power converters stacked in parallel.

Learn More in our technical article

Featured Chalk Talk

Mom, I Have a Digital Twin? Now You Tell Me?

Sponsored by Cadence Design Systems

Today, one engineer’s “system” is another engineer’s “component.” The complexity of system-level design has skyrocketed with the new wave of intelligent systems. In this world, optimizing electronic system designs requires digital twins, shifting left, virtual platforms, and emulation to sort everything out. In this episode of Chalk Talk, Amelia Dalton chats with Frank Schirrmeister of Cadence Design Systems about system-level optimization.

Click here for more information