editor's blog
Subscribe Now

A new way to do metal

I noticed an interesting release courtesy of Leti, the French research consortium. It concerns a new way of depositing metal that looks so easy that it clearly must not be (or else everyone would have been doing it).

Copper has become the standard metal for logic processes. It uses a series of standard photolithographic steps to deposit, pattern, and etch the metal. The problem is that the cost of this process has been prohibitive for other smaller non-logic chips whose price can’t support such a process.

A French company, Replisaurus, has developed a completely different way of depositing metal, and it requires no photolithography at all. Instead, a template is formed for the metal pattern. The template consists of a mask-like wafer within which the metal pattern has been etched to form trenches.

When used, these trenches are filled with metal, so the patterning for the entire wafer is already in place. A seed layer is deposited on the silicon wafer, and then the template is placed on the wafer. The template and the wafer act as electrodes, and the metal in the template is “sucked” onto the wafer, depositing the entire pattern in one go.

A bit of etching gets rid of the unwanted portions of the seed layer, and you’re good to go.

This saves a lot of processing steps as well as avoiding the issues surrounding photolithography. But they also make one more claim that’s a bit surprising (and, so far, my request for clarification has gone unanswered): they say no CMP is needed. It’s hard to imagine the metal going down smoothly on a rough substrate – especially on top of other layers of metal. There must be something I’m missing there…

More info and pointers on Leti’s release

Leave a Reply

featured blogs
Dec 1, 2023
Why is Design for Testability (DFT) crucial for VLSI (Very Large Scale Integration) design? Keeping testability in mind when developing a chip makes it simpler to find structural flaws in the chip and make necessary design corrections before the product is shipped to users. T...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured webinar

Rapid Learning: Purpose-Built MCU Software Tools for Data-Driven Embedded IoT Systems

Sponsored by ITTIA

Are you developing an MCU application that captures data of all kinds (metrics, events, logs, traces, etc.)? Are you ready to reduce the difficulties and complications involved in developing an event- and data-centric embedded system? This webinar will quickly introduce you to excellent MCU-specific software options for developing your next-generation data-driven IoT systems. You will also learn how to recognize and overcome data management obstacles. Register today as seats are limited!

Register Now!

featured chalk talk

dsPIC33CH DSCs: Two dsPIC33Cs on a Single Chip
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Vijay Bapu from Microchip and Amelia Dalton explore the benefits of dual core digital signal controllers. They discuss the key specifications to keep in mind when it comes to single core and dual core DSCs and how you can reduce your development time, save board space and cost and keep the performance and isolation you need with Microchip’s dsPIC33CH DSCs.
Jan 24, 2023
37,015 views