editor's blog
Subscribe Now

More smart grid standardization work

Almost a year ago we took a look at smart grid technology. One of the obvious things that emerged when looking at how smart grids are evolving is the fact that it’s very fractured: each country or region has its own way of doing things. There may well be overlap, but that’s not necessarily due to strategic collaboration; sometimes it just happens.

So it was with interest that I saw that CEVA announced approval by the Israeli Chief Scientist (who knew that countries had CTOs!) of a consortium for standardizing various smart-grid-related technologies. I checked with CEVA to see what the scope is: is this another regional effort or is there some global work ongoing? The fact that an Israeli government functionary was giving a blessing made it feel very much like an Israel-only thing.

Turns out that it is an Israel-only effort, with all participating companies and academic institutions being Israeli, partially funded by government dollars – which can’t go to non-Israeli companies. There are some non-Israeli observers: IBM has expressed interest in observing, for example. Their ideas will be demonstrated on a local pilot grid run by the local utility (IEC).

But they have global designs – specifically, CEVA said it’s “an Israeli consortium with global focus,” meaning that whatever comes out of the consortium will join the competition for ideas around the world. That’s not quite the same as a global harmonization effort, although, if more good ideas are thrown on the pile, that’s a good thing – as long as it’s quality of ideas and not parochialism and entrenched interest that drive decisions globally. And, as they point out, the Israeli market itself is small, so it’s really the rest of the world that drives the ROI on this effort. And all of the participating companies sell globally.

Smart meters are of some personal interest since I happen to live in the smart-meter-hating capital of the world (I assume; I can’t imagine how any other place could hate them more). There’s an official city moratorium on them, although that clearly carries no weight, since the utility just went through and converted my neighborhood. Although I did see that they spared some meters that specifically had “do not convert” notes on them. I know one couple that has multiple padlocks on their old meter to ensure that it doesn’t get removed.

Just out of curiosity, I asked whether any of these controversial issues were in any way involved in the list of things to be addressed by the consortium. And, to be clear, the issues really boil down to two: the concern with wireless technology in general, stemming from the concern about the health effects of cell phones; and privacy concerns, given that the utility can decode many of the appliances by looking at the power signature, and that the Googles of the world are anxiously waiting to buy that data.

As I suspected, neither of those topics is on the table. Of course, the consortium concerns itself with all manner of smart grid technologies – not all of which are wireless. And, really, that whole wireless health issue has to be resolved on its own. Although, talking to some of these people, I believe that no amount of science will convince them that there’s not a problem (assuming that there isn’t one).

As to the privacy thing, CEVA acknowledged that there could be some concern, but that it ultimately wouldn’t stop progress “…mainly because the benefits of smart grid to both utilities and its customers are much greater than its faults.” Which is a bit of a “privacy is dead, get over it” approach. Then again, such privacy issues are probably more of a policy issue than a technical one – pass laws forbidding utilities from selling personally-identifiable power-use data without explicit opt-in, for example. So as long as the consortium isn’t doing anything specifically to make it easier to snoop on everyone’s intimate power use details, it’s presumably out of their domain.

More info on the consortium can be found on CEVA’s press release

Leave a Reply

featured blogs
Jan 26, 2023
By Slava Zhuchenya Software migration can be a dreaded endeavor, especially for electronic design automation (EDA) tools that design companies… ...
Jan 26, 2023
Are you experienced in using SVA? It's been around for a long time, and it's tempting to think there's nothing new to learn. Have you ever come across situations where SVA can't solve what appears to be a simple problem? What if you wanted to code an assertion that a signal r...
Jan 24, 2023
We explain embedded magnetoresistive random access memory (eMRAM) and its low-power SoC design applications as a non-volatile memory alternative to SRAM & Flash. The post Why Embedded MRAMs Are the Future for Advanced-Node SoCs appeared first on From Silicon To Software...
Jan 19, 2023
Are you having problems adjusting your watch strap or swapping out your watch battery? If so, I am the bearer of glad tidings....

featured video

Synopsys 224G & 112G Ethernet PHY IP OIF Interop at ECOC 2022

Sponsored by Synopsys

This Featured Video shows four demonstrations of the Synopsys 224G and 112G Ethernet PHY IP long and medium reach performance, interoperating with third-party channels and SerDes.

Learn More

featured chalk talk

Twinax Flyover Systems for Next Gen Speeds

Sponsored by Samtec

As the demand for higher and higher speed connectivity increases, we need to look at our interconnect solutions to help solve the design requirements inherent with these kinds of designs. In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec discuss how Samtec’s Flyover technology is helping solve our high speed connectivity needs. They take closer look at how Samtec’s Flyover technology helps solve the issue with PCB reach, the details of FLYOVER® QSFP SYSTEM, and how this cost effective, high–performance and heat efficient can help you with the challenges of your 56 Gbps bandwidths and beyond design.

Click here for more information about Twinax Flyover® Systems for Next Gen Speeds