editor's blog
Subscribe Now

Sensors at Semicon West

On the heels of the series of sensor articles we did, I found some new sensor attention at Semicon West. While the focus of the session was MEMS in general, a couple of the presentations elaborated more on the kinds of sensors and applications they enable.

First was Jo de Boeck of imec. His focus was on detecting volatile compounds in the air or in someone’s breath – what they call a “micromechanical e-nose.” This works through an array of resonators of various sizes. Each resonator contains a layer of a polymer that can accumulate a targeted substance. If the accumulation is via adsorption (i.e., sticking to the surface), then the mass of the resonator changes. If, instead, the substance is absorbed and causes the polymer to swell, then stresses are created. In either case, the resonance changes.

He illustrated compounds that might be of interest in the breath – ethanol, ammonia, sulfur, 2-butanol (various esters of which apparently show up in perfumes and flavors), isoprene (the main hydrocarbon in human breath and, oddly enough, the monomer of natural rubber), acetone, NO, and H2O2 – that could be indicative of anything from bad breath to much more serious metabolic or other disorders. He also illustrated some target compounds for environmental sniffing, from simple humidity to various volatile mixtures, for detecting or analyzing such things as sweat, odors, pollution, hazards, or even just comfort.

By looking for patterns, they want to be able to go further than just detecting compounds and infer their sources. He illustrated with a conceptual chart discriminating between air, glowing cotton, a glowing cigarette, and a smoldering cable.

Meanwhile, Bosch’s Gary O’Brien focused on three new Bosch sensors. The first was a rollover sensor for use in automobiles. It’s an angular rate sensor that detects when you’ve driven into a ditch or one wheel is driving up a ramp, even if the car isn’t necessarily rolling over (yet). This allows airbags and belt tensioners to kick in and protect the passengers if it does go over. This feature is supposed to be 100% incorporated into North American cars by 2017.

The second was a MEMS microphone that they claim as the world’s smallest monolithic MEMS device. The deal with this is that two microphones can be put in the laptop lid on either side of the camera to eliminate ambient noise from the laptop itself and to provide much better voice quality.

Finally, he discussed barometric pressure sensors for use as altimeters, weather “stations,” and for indoor navigation – one of them is accurate to 0.17 m, so it can tell which floor you’re on in a building, for example, something that GPS, even if it can get into the building, isn’t accurate enough to figure out.

We’ll look more at some of the MEMS techniques illustrated here and with the other talks in a separate upcoming article.

Leave a Reply

featured blogs
Dec 1, 2020
If you'€™d asked me at the beginning of 2020 as to the chances of my replicating an 1820 Welsh dresser, I would have said '€œzero,'€ which just goes to show how little I know....
Dec 1, 2020
More package designers these days, with the increasing component counts and more complicated electrical constraints, are shifting to using a front-end schematic capture tool. As with IC and PCB... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Dec 1, 2020
UCLA’s Maxx Tepper gives us a brief overview of the Ocean High-Throughput processor to be used in the upgrade of the real-time event selection system of the CMS experiment at the CERN LHC (Large Hadron Collider). The board incorporates Samtec FireFly'„¢ optical cable ...
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...

featured video

AI SoC Chats: Protecting Data with Security IP

Sponsored by Synopsys

Understand the threat profiles and security trends for AI SoC applications, including how laws and regulations are changing to protect the private information and data of users. Secure boot, secure debug, and secure communication for neural network engines is critical. Learn how DesignWare Security IP and Hardware Root of Trust can help designers create a secure enclave on the SoC and update software remotely.

Click here for more information about Security IP

featured paper

Top 9 design questions about digital isolators

Sponsored by Texas Instruments

Looking for more information about digital isolators? We’re here to help. Based on TI E2E™ support forum feedback, we compiled a list of the most frequently asked questions about digital isolator design challenges. This article covers questions such as, “What is the logic state of a digital isolator with no input signal?”, and “Can you leave unused channel pins on a digital isolator floating?”

Click here to download the whitepaper

featured chalk talk

AC Protection & Motor Control in HVAC Systems

Sponsored by Mouser Electronics and Littelfuse

The design of HVAC systems poses unique challenges for things like motor control and circuit protection. System performance and reliability are critical, and those come in part from choosing the right components for the job. In this episode of Chalk Talk, Amelia Dalton chats with Ryan Sheahen of Littelfuse about choosing the right components for your next HVAC design.

Click here for more information about Littelfuse AC Protection & Motor Control in HVAC Solutions