editor's blog
Subscribe Now

Managing Multicore Tasks

We’ve looked in the past at some of the APIs put together by the Multicore Association, notably the MCAPI communications API (and its update) and the MRAPI resource management API. In the same spirit, they are now taking up the issue of task management.

The whole idea with multicore software is that a program can be decomposed into multiple pieces that can be run concurrently. How you do that partitioning can be a hard problem, and is receiving some tools attention as the multicore design process gets some automation. You might think of these pieces as threads, but, in fact, threads are typically a specific implementation in SMP systems. Alternative parallel configurations can include multiple independent programs (rather than threads), each with its own OS, or even simple run-to-completion programs on “bare metal,” i.e., with no OS (and, hence, no threading services) at all.

So rather than getting bogged down in worrying about whether these “pieces” of the program are threads or programs or whatever, they can be generically referred to as tasks. And, while SMP OSes can handle the management and scheduling of threads, there’s no general task management solution for non-SMP systems – or, more critically, there’s no general approach that works for both SMP and AMP, homogeneous and heterogeneous systems.

Even where threading services exist, they can have far too much overhead for many embedded programs. Including the cost of creating and destroying threads, the overhead can completely wipe out any theoretical gains that the parallel version was supposed to provide. If your program exploits fine-grained parallelism, with hundreds or more small tasks, then the thread management can take longer than the actual execution of the thread itself.

In order to address this, the Multicore Association is taking up the creation of a task management API, called MTAPI, in order to provide a general approach for all architectures, and one whose implementation can be tailored to limited resources as needed. The process is just starting, and they’re soliciting input and participants.

More info can be found in their release

Leave a Reply

featured blogs
May 16, 2021
https://youtu.be/_wup2MSTVks Made on Communication Hill, San Jose (camera Carey Guo) Monday: Intel eASIC: Linley and DARPA Tuesday: Please Excuse the Mesh: CFD and Pointwise Wednesday: Linley:... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
May 13, 2021
Samtec will attend the PCI-SIG Virtual Developers Conference on Tuesday, May 25th through Wednesday, May 26th, 2021. This is a free event for the 800+ member companies that develop and bring to market new products utilizing PCI Express technology. Attendee Registration is sti...
May 13, 2021
Our new IC design tool, PrimeSim Continuum, enables the next generation of hyper-convergent IC designs. Learn more from eeNews, Electronic Design & EE Times. The post Synopsys Makes Headlines with PrimeSim Continuum, an Innovative Circuit Simulation Solution appeared fi...
May 13, 2021
By Calibre Design Staff Prior to the availability of extreme ultraviolet (EUV) lithography, multi-patterning provided… The post A SAMPle of what you need to know about SAMP technology appeared first on Design with Calibre....

featured video

Super Resolution with ARC EV Processor IP

Sponsored by Synopsys

Interested in upscaling images with AI? Join Gordon Cooper for an update on SR-GAN with ARC EV Processors.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

Smile, You're on My Security Camera!

Sponsored by Maxim Integrated

Advances in wireless and IoT technologies are fueling market growth for security camera systems. Outdoor security cameras need to operate for a long time on small disposable batteries. This design solution shows how a high-performance power management system can power an outdoor security camera several months longer than an ordinary solution.

Click to read more

featured chalk talk

The Wireless Member of the DARWIN Family

Sponsored by Mouser Electronics and Maxim Integrated

MCUs continue to evolve based on increasing demands from designers. We expect our microcontrollers to do more than ever - better security, more performance, lower power consumption - and we want it all for less money, of course. In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis from Maxim Integrated about the new DARWIN line of low-power MCUs.

Click here for more information about Maxim Integrated MAX32665-MAX32668 UB Class Microcontroller