editor's blog
Subscribe Now

Managing Multicore Tasks

We’ve looked in the past at some of the APIs put together by the Multicore Association, notably the MCAPI communications API (and its update) and the MRAPI resource management API. In the same spirit, they are now taking up the issue of task management.

The whole idea with multicore software is that a program can be decomposed into multiple pieces that can be run concurrently. How you do that partitioning can be a hard problem, and is receiving some tools attention as the multicore design process gets some automation. You might think of these pieces as threads, but, in fact, threads are typically a specific implementation in SMP systems. Alternative parallel configurations can include multiple independent programs (rather than threads), each with its own OS, or even simple run-to-completion programs on “bare metal,” i.e., with no OS (and, hence, no threading services) at all.

So rather than getting bogged down in worrying about whether these “pieces” of the program are threads or programs or whatever, they can be generically referred to as tasks. And, while SMP OSes can handle the management and scheduling of threads, there’s no general task management solution for non-SMP systems – or, more critically, there’s no general approach that works for both SMP and AMP, homogeneous and heterogeneous systems.

Even where threading services exist, they can have far too much overhead for many embedded programs. Including the cost of creating and destroying threads, the overhead can completely wipe out any theoretical gains that the parallel version was supposed to provide. If your program exploits fine-grained parallelism, with hundreds or more small tasks, then the thread management can take longer than the actual execution of the thread itself.

In order to address this, the Multicore Association is taking up the creation of a task management API, called MTAPI, in order to provide a general approach for all architectures, and one whose implementation can be tailored to limited resources as needed. The process is just starting, and they’re soliciting input and participants.

More info can be found in their release

Leave a Reply

featured blogs
Feb 27, 2021
New Edge Rate High Speed Connector Set Is Micro, Rugged Years ago, while hiking the Colorado River Trail in Rocky Mountain National Park with my two sons, the older one found a really nice Swiss Army Knife. By “really nice” I mean it was one of those big knives wi...
Feb 26, 2021
OMG! Three 32-bit processor cores each running at 300 MHz, each with its own floating-point unit (FPU), and each with more memory than you than throw a stick at!...
Feb 26, 2021
In the SPECTRE 20.1 base release, we released Spectre® XDP-HB as part of the new Spectre X-RF simulation technology. Spectre XDP-HB uses a highly distributed multi-machine multi-core simulation... [[ Click on the title to access the full blog on the Cadence Community si...

featured video

Designing your own Processor with ASIP Designer

Sponsored by Synopsys

Designing your own processor is time-consuming and resource intensive, and it used to be limited to a few experts. But Synopsys’ ASIP Designer tool allows you to design your own specialized processor within your deadline and budget. Watch this video to learn more.

Click here for more information

featured paper

Using the DS28E18, The Basics

Sponsored by Maxim Integrated

This application note goes over the basics of using the DS28E18 1-Wire® to I2C/SPI Bridge with Command Sequencer and discusses the steps to get it up and running quickly. It then shows how to use the device with two different devices. The first device is an I2C humidity/temperature sensor and the second one is an SPI temperature sensor device. It concludes with detailed logs of each command.

Click here to download the whitepaper

featured chalk talk

Microwave/Millimeter Cable Assemblies and Interconnects

Sponsored by Mouser Electronics and Samtec

Cabling and connectors for RF design are critical to performance. And, in the world of microwave and millimeter-wave design, choosing the right interconnect for your frequency band is key to signal integrity. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns of Samtec about what you need to know to choose the right interconnect solution for your next RF design.

Click here for more information about Samtec Precision RF Connectors & Cable Assemblies