editor's blog
Subscribe Now

A New Spin on Logic

Way back in 2008, we took a look at MRAM technology. As a brief review, you may recall that Crocus in particular takes advantage of tunneling magneto-resistance between two magnetic layers. The bottom layer is fixed, or “pinned” and acts as a reference layer. The top one – also referred to as the “free” or “storage” layer – can have its magnetic polarity (or, more accurately, moment) reversed. Selectivity can be improved by engineering the materials so that a current during the write operation will heat the cell and lower the “coercivity” of the material – meaning that you switch that storage layer’s cell without disturbing any other cell. Crocus refers to this as thermally-assisted switching.

With that background (and recommending you to the original article for the details), Crocus has announced what they call a “magnetic logic unit” (MLU). They claim this capability lets them implement a NOR memory architecture, a NAND architecture, or an XOR cell.

They’re still being a bit cautious about the details of how this works, but Crocus’s Barry Hoberman took me though the XOR scenario. Before we can go all the way there, we should take one intermediate step by changing how a cell is read.

Originally, we had a pinned reference layer, and we read the cell by measuring the resistance through the cell. Relatively lower resistance means both layers magnetized alike (or in “alignment”); higher resistance meaning they’re magnetized oppositely (or in “anti-alignment”). So the first step we’re going to take is to remove the pinning. Now the reference layer – also called the “sense” layer, since it helps sense the state of the cell – is magnetically “floating”. Then add some metal lines so that you can magnetize the sense layer as north or south. (To pick arbitrary names for two magnetic states).

To read the cell, first set the sense layer to north and do a resistance read; then, very quickly, switch the sense layer to south and do another read. This is a differential-mode read; whichever resistance is higher establishes the polarity of the storage node.

But here’s where the XOR characteristic comes in: you can ignore the specific northness or southness of the fields. If the two layers – sense and storage – have the same polarity (regardless of what it is), they will run lower resistance; if they have opposite polarity, they’ll have higher resistance. That’s the very definition of the exclusive-OR function (assuming low resistance means 1).

Exactly where all of this will lead product-wise isn’t clear yet. They discuss a number of applications of the NAND and XOR capability, but right now it’s just a technology story. Presumably, staying tuned will give us the rest of the story at some point.

More details in Crocus’s release

Leave a Reply

featured blogs
Jun 18, 2021
It's a short week here at Cadence CFD as we celebrate the Juneteenth holiday today. But CFD doesn't take time off as evidenced by the latest round-up of CFD news. There are several really... [[ Click on the title to access the full blog on the Cadence Community sit...
Jun 17, 2021
Learn how cloud-based SoC design and functional verification systems such as ZeBu Cloud accelerate networking SoC readiness across both hardware & software. The post The Quest for the Most Advanced Networking SoC: Achieving Breakthrough Verification Efficiency with Clou...
Jun 17, 2021
In today’s blog episode, we would like to introduce our newest White Paper: “System and Component qualifications of VPX solutions, Create a novel, low-cost, easy to build, high reliability test platform for VPX modules“. Over the past year, Samtec has worked...
Jun 14, 2021
By John Ferguson, Omar ElSewefy, Nermeen Hossam, Basma Serry We're all fascinated by light. Light… The post Shining a light on silicon photonics verification appeared first on Design with Calibre....

featured video

Reduce Analog and Mixed-Signal Design Risk with a Unified Design and Simulation Solution

Sponsored by Cadence Design Systems

Learn how you can reduce your cost and risk with the Virtuoso and Spectre unified analog and mixed-signal design and simulation solution, offering accuracy, capacity, and high performance.

Click here for more information about Spectre FX Simulator

featured paper

Adaptive Beamformer: An HLS Optimization Case Study with SLX FPGA

Sponsored by Silexica

Learn how SLX FPGA provides a productivity and efficiency boost when using high-level synthesis (HLS) to implement FPGA applications in C/ C++, through automated analysis and optimization. In this beamforming example, SLX FPGA achieves a lower latency and cuts development time from weeks down to minutes, compared to hand-optimization for similar resource costs.

Click to read more

featured chalk talk

Accelerating Innovation at the Edge with Xilinx Adaptive System on Modules

Sponsored by Xilinx

The combination of system-on-module technology with advanced SoCs with programmable logic offer the ultimate in functionality, performance, flexibility, power efficiency, and ease of use. In this episode of Chalk Talk, Amelia Dalton chats with Karan Kantharia of Xilinx about the new Kira SOM, and how it enables faster time-to-deployment versus conventional component-based design.

Click here for more information about Kria Adaptive System-on-Modules