editor's blog
Subscribe Now

A New Spin on Logic

Way back in 2008, we took a look at MRAM technology. As a brief review, you may recall that Crocus in particular takes advantage of tunneling magneto-resistance between two magnetic layers. The bottom layer is fixed, or “pinned” and acts as a reference layer. The top one – also referred to as the “free” or “storage” layer – can have its magnetic polarity (or, more accurately, moment) reversed. Selectivity can be improved by engineering the materials so that a current during the write operation will heat the cell and lower the “coercivity” of the material – meaning that you switch that storage layer’s cell without disturbing any other cell. Crocus refers to this as thermally-assisted switching.

With that background (and recommending you to the original article for the details), Crocus has announced what they call a “magnetic logic unit” (MLU). They claim this capability lets them implement a NOR memory architecture, a NAND architecture, or an XOR cell.

They’re still being a bit cautious about the details of how this works, but Crocus’s Barry Hoberman took me though the XOR scenario. Before we can go all the way there, we should take one intermediate step by changing how a cell is read.

Originally, we had a pinned reference layer, and we read the cell by measuring the resistance through the cell. Relatively lower resistance means both layers magnetized alike (or in “alignment”); higher resistance meaning they’re magnetized oppositely (or in “anti-alignment”). So the first step we’re going to take is to remove the pinning. Now the reference layer – also called the “sense” layer, since it helps sense the state of the cell – is magnetically “floating”. Then add some metal lines so that you can magnetize the sense layer as north or south. (To pick arbitrary names for two magnetic states).

To read the cell, first set the sense layer to north and do a resistance read; then, very quickly, switch the sense layer to south and do another read. This is a differential-mode read; whichever resistance is higher establishes the polarity of the storage node.

But here’s where the XOR characteristic comes in: you can ignore the specific northness or southness of the fields. If the two layers – sense and storage – have the same polarity (regardless of what it is), they will run lower resistance; if they have opposite polarity, they’ll have higher resistance. That’s the very definition of the exclusive-OR function (assuming low resistance means 1).

Exactly where all of this will lead product-wise isn’t clear yet. They discuss a number of applications of the NAND and XOR capability, but right now it’s just a technology story. Presumably, staying tuned will give us the rest of the story at some point.

More details in Crocus’s release

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

AI SoC Chats: IP for In-Memory / Near-Memory Compute

Sponsored by Synopsys

AI chipsets are data hungry and have high compute intensity, leading to potential power consumption issues. Join Synopsys Fellow Jamil Kawa to learn how in-memory or near-memory compute, 3D stacking, and other innovations can address the challenges of making chips think like the human brain.

Click here for more information about DesignWare IP for Amazing AI

Featured Paper

An Introduction to Automotive LIDAR

Sponsored by Texas Instruments

This white paper is an introduction to industrial and automotive time-of-flight (ToF) light detection and ranging (LIDAR) solutions to serve next-generation autonomous systems.

Click here to download the whitepaper

Featured Chalk Talk

Thermal Bridge Technology

Sponsored by Mouser Electronics and TE Connectivity

Recent innovations can make your airflow cooling more efficient and effective. New thermal bridges can outperform conventional thermal pads in a number of ways. In this episode of Chalk Talk, Amelia Dalton chats with Zach Galbraith of TE Connectivity about the application of thermal bridges in cooling electronic designs.

More information about TE Thermal Bridge Technology