editor's blog
Subscribe Now

An Almost-Cloudy San Diego Day

Not long ago we looked at how EDA is shaping up in the cloud, including work that Synopsys has been doing to make VCS available for bursty relief usage. I was fortunate enough to attend a demo session to show how what has heretofore been an interesting theoretical discussion could be made concrete.

Synopsys spent a lot of effort on cloud computing at DAC this year, including a cloud partners booth. Various names, both obvious and some not so, were in the booth: Amazon, NetAp, Cisco, CloudPassage, Univa, Platform Computing, Xuropa, and EVE. Most of these guys provide a variety of services to bolster the Infrastructure as a service (IaaS), Platform as a service (PaaS), or Software as a service (SaaS) layers of any EDA offering. They appear to have very specific EDA (not just Synopsys) messaging.

In the demo session itself, we saw a bit more of Synopsys’s VCS specifics. As mentioned before, their setup involves a master node and multiple work nodes. Each cloud-computing instance (CCI) node consists of an 8-core Nehalem machine with 23 GB of memory for the 8 cores, along with a single VCS license. You can then requisition clusters consisting of multiples of 8 nodes, sizing up to hundreds of nodes (although they want advance notice on really large requests for now so they can set that up with Amazon; they don’t currently have them lying around because that costs money and there’s not that much demand yet).

They showed the scripts used to get things set up. The bring-up process lasts about a half an hour (they didn’t try to run that live), which might sound like a long time until you realize that, in that time, you’ve gone from nothing to, potentially, a multi-hundred-server compute farm.

I’d like to report on how they then went into the cloud and ran an example OpenSPARC simulation. That was the plan. But the unthinkable happened. And I totally felt for the guy running the demo. I mean, it’s the nightmare scenario for any of you (and me) who have done demos: you go to where the files are all ready to be uploaded and run… and… they’re gone. Completely gone. Like, the folder isn’t even there.

Turns out that a hard drive died on the Synopsys campus. The drive housing the project they were going to demonstrate. File it under “W” for “WT…” well, you know how that one ends. Yeah, crazy. So there wasn’t time to reconstruct it on another drive and start again. So we’ll have to report later when we see things actually happening in the cloud.

Leave a Reply

featured blogs
Oct 4, 2022
We share 6 key advantages of cloud-based IC hardware design tools, including enhanced scalability, security, and access to AI-enabled EDA tools. The post 6 Reasons to Leverage IC Hardware Development in the Cloud appeared first on From Silicon To Software....
Oct 4, 2022
Anyone designing a data center faces complex thermal management challenges . Yes, there's a large amount of electrical power required, but the other side of that coin is that almost all the power gets turned into heat, putting a tremendous strain on the airflow and cooling sy...
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Faster, More Predictable Path to Multi-Chiplet Design Closure

Sponsored by Cadence Design Systems

The challenges for 3D IC design are greater than standard chip design - but they are not insurmountable. In this episode of Chalk Talk, Amelia Dalton chats with Vinay Patwardhan from Cadence Design Systems about the variety of challenges faced by 3D IC designers today and how Cadence’s integrated, high-capacity Integrity 3D IC Platform, with its 3D design planning and implementation cockpit, flow manager and co-design capabilities will not only help you with your next 3D IC design.

Click here for more information about Integrity 3D-IC Platform from Cadence Design Systems