editor's blog
Subscribe Now

An Almost-Cloudy San Diego Day

Not long ago we looked at how EDA is shaping up in the cloud, including work that Synopsys has been doing to make VCS available for bursty relief usage. I was fortunate enough to attend a demo session to show how what has heretofore been an interesting theoretical discussion could be made concrete.

Synopsys spent a lot of effort on cloud computing at DAC this year, including a cloud partners booth. Various names, both obvious and some not so, were in the booth: Amazon, NetAp, Cisco, CloudPassage, Univa, Platform Computing, Xuropa, and EVE. Most of these guys provide a variety of services to bolster the Infrastructure as a service (IaaS), Platform as a service (PaaS), or Software as a service (SaaS) layers of any EDA offering. They appear to have very specific EDA (not just Synopsys) messaging.

In the demo session itself, we saw a bit more of Synopsys’s VCS specifics. As mentioned before, their setup involves a master node and multiple work nodes. Each cloud-computing instance (CCI) node consists of an 8-core Nehalem machine with 23 GB of memory for the 8 cores, along with a single VCS license. You can then requisition clusters consisting of multiples of 8 nodes, sizing up to hundreds of nodes (although they want advance notice on really large requests for now so they can set that up with Amazon; they don’t currently have them lying around because that costs money and there’s not that much demand yet).

They showed the scripts used to get things set up. The bring-up process lasts about a half an hour (they didn’t try to run that live), which might sound like a long time until you realize that, in that time, you’ve gone from nothing to, potentially, a multi-hundred-server compute farm.

I’d like to report on how they then went into the cloud and ran an example OpenSPARC simulation. That was the plan. But the unthinkable happened. And I totally felt for the guy running the demo. I mean, it’s the nightmare scenario for any of you (and me) who have done demos: you go to where the files are all ready to be uploaded and run… and… they’re gone. Completely gone. Like, the folder isn’t even there.

Turns out that a hard drive died on the Synopsys campus. The drive housing the project they were going to demonstrate. File it under “W” for “WT…” well, you know how that one ends. Yeah, crazy. So there wasn’t time to reconstruct it on another drive and start again. So we’ll have to report later when we see things actually happening in the cloud.

Leave a Reply

featured blogs
Sep 27, 2020
https://youtu.be/EUDdGqdmTUU Made in "the Alps" Monday: Complete RF Solution: Think Outside the Chip Tuesday: The First Decade of RISC-V: A Worldwide Phenomenon Wednesday: The European... [[ Click on the title to access the full blog on the Cadence Community site. ...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
Weird weather is one the things making 2020 memorable. As I look my home office window (WFH – yet another 2020 “thing”!), it feels like mid-summer in late September. In some places like Key West or Palm Springs, that is normal. In Pennsylvania, it is not. My...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Product Update: Synopsys and SK hynix Discuss HBM2E at 3.6Gbps

Sponsored by Synopsys

In this video interview hear from Keith Kim, Team Leader of DRAM Technical Marketing at SK hynix, discussing the wide adoption of HBM2E at 3.6Gbps and successful collaboration with Synopsys to validate the DesignWare HBM2E IP at the maximum speed.

Click here for more information about DesignWare DDR IP Solutions

Featured Paper

An Introduction to Automotive LIDAR

Sponsored by Texas Instruments

This white paper is an introduction to industrial and automotive time-of-flight (ToF) light detection and ranging (LIDAR) solutions to serve next-generation autonomous systems.

Click here to download the whitepaper

Featured Chalk Talk

Wide Band Gap: Silicon Carbide

Sponsored by Mouser Electronics and ON Semiconductor

Wide bandgap materials such as silicon carbide are revolutionizing the power industry. From electric vehicles and charging stations to solar power to industrial power supplies, wide bandgap brings efficiency, improved thermal performance, size reduction, and more. In this episode of Chalk Talk, Amelia Dalton chats with Brandon Becker from ON Semiconductor about the advantages of silicon carbide diodes and MOSFETs.

Click here for more information about ON Semiconductor Wide Bandgap SiC Devices