editor's blog
Subscribe Now

An Almost-Cloudy San Diego Day

Not long ago we looked at how EDA is shaping up in the cloud, including work that Synopsys has been doing to make VCS available for bursty relief usage. I was fortunate enough to attend a demo session to show how what has heretofore been an interesting theoretical discussion could be made concrete.

Synopsys spent a lot of effort on cloud computing at DAC this year, including a cloud partners booth. Various names, both obvious and some not so, were in the booth: Amazon, NetAp, Cisco, CloudPassage, Univa, Platform Computing, Xuropa, and EVE. Most of these guys provide a variety of services to bolster the Infrastructure as a service (IaaS), Platform as a service (PaaS), or Software as a service (SaaS) layers of any EDA offering. They appear to have very specific EDA (not just Synopsys) messaging.

In the demo session itself, we saw a bit more of Synopsys’s VCS specifics. As mentioned before, their setup involves a master node and multiple work nodes. Each cloud-computing instance (CCI) node consists of an 8-core Nehalem machine with 23 GB of memory for the 8 cores, along with a single VCS license. You can then requisition clusters consisting of multiples of 8 nodes, sizing up to hundreds of nodes (although they want advance notice on really large requests for now so they can set that up with Amazon; they don’t currently have them lying around because that costs money and there’s not that much demand yet).

They showed the scripts used to get things set up. The bring-up process lasts about a half an hour (they didn’t try to run that live), which might sound like a long time until you realize that, in that time, you’ve gone from nothing to, potentially, a multi-hundred-server compute farm.

I’d like to report on how they then went into the cloud and ran an example OpenSPARC simulation. That was the plan. But the unthinkable happened. And I totally felt for the guy running the demo. I mean, it’s the nightmare scenario for any of you (and me) who have done demos: you go to where the files are all ready to be uploaded and run… and… they’re gone. Completely gone. Like, the folder isn’t even there.

Turns out that a hard drive died on the Synopsys campus. The drive housing the project they were going to demonstrate. File it under “W” for “WT…” well, you know how that one ends. Yeah, crazy. So there wasn’t time to reconstruct it on another drive and start again. So we’ll have to report later when we see things actually happening in the cloud.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

nanoPower Module Extends Battery Life in Space-Constrained Applications

Sponsored by Analog Devices

Designers can now increase battery life and reduce size in space-constrained IoT devices with a power module that features the lowest quiescent current compared to competitive solutions and uSLIC built-in inductor technology that reduces solution size by up to 37%.

Read Now

featured chalk talk

Simplifying Brushless Motor Controls with Toshiba Motor Control Solutions

Sponsored by Mouser Electronics and Toshiba

Making sure your motor control design is efficient and ready for primetime can be a complicated process. In this episode of Chalk Talk, Amelia Dalton chats with Alan Li from Toshiba about the basics of brushless motor control, more advanced variables including lead angle control and intelligent phase control and most importantly, how you can simplify your next brushless motor control design.

Click here for more information about Toshiba Brushless Motor Driver ICs