editor's blog
Subscribe Now

An Almost-Cloudy San Diego Day

Not long ago we looked at how EDA is shaping up in the cloud, including work that Synopsys has been doing to make VCS available for bursty relief usage. I was fortunate enough to attend a demo session to show how what has heretofore been an interesting theoretical discussion could be made concrete.

Synopsys spent a lot of effort on cloud computing at DAC this year, including a cloud partners booth. Various names, both obvious and some not so, were in the booth: Amazon, NetAp, Cisco, CloudPassage, Univa, Platform Computing, Xuropa, and EVE. Most of these guys provide a variety of services to bolster the Infrastructure as a service (IaaS), Platform as a service (PaaS), or Software as a service (SaaS) layers of any EDA offering. They appear to have very specific EDA (not just Synopsys) messaging.

In the demo session itself, we saw a bit more of Synopsys’s VCS specifics. As mentioned before, their setup involves a master node and multiple work nodes. Each cloud-computing instance (CCI) node consists of an 8-core Nehalem machine with 23 GB of memory for the 8 cores, along with a single VCS license. You can then requisition clusters consisting of multiples of 8 nodes, sizing up to hundreds of nodes (although they want advance notice on really large requests for now so they can set that up with Amazon; they don’t currently have them lying around because that costs money and there’s not that much demand yet).

They showed the scripts used to get things set up. The bring-up process lasts about a half an hour (they didn’t try to run that live), which might sound like a long time until you realize that, in that time, you’ve gone from nothing to, potentially, a multi-hundred-server compute farm.

I’d like to report on how they then went into the cloud and ran an example OpenSPARC simulation. That was the plan. But the unthinkable happened. And I totally felt for the guy running the demo. I mean, it’s the nightmare scenario for any of you (and me) who have done demos: you go to where the files are all ready to be uploaded and run… and… they’re gone. Completely gone. Like, the folder isn’t even there.

Turns out that a hard drive died on the Synopsys campus. The drive housing the project they were going to demonstrate. File it under “W” for “WT…” well, you know how that one ends. Yeah, crazy. So there wasn’t time to reconstruct it on another drive and start again. So we’ll have to report later when we see things actually happening in the cloud.

Leave a Reply

featured blogs
May 17, 2022
'Virtuoso Meets Maxwell' is a blog series aimed at exploring the capabilities and potential of Virtuoso® RF Solution and Virtuoso MultiTech. So, how does Virtuoso meet Maxwell? Now,... ...
May 17, 2022
Explore Arm's SystemReady program, and learn how we're simplifying hardware/software compliance through pre-silicon testing for Base System Architecture (BSA). The post Collaborating to Ensure that Software Just Works Across Arm-Based Hardware appeared first on From Silicon ...
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...
Apr 29, 2022
What do you do if someone starts waving furiously at you, seemingly delighted to see you, but you fear they are being overenthusiastic?...

featured video

Increasing Semiconductor Predictability in an Unpredictable World

Sponsored by Synopsys

SLM presents significant value-driven opportunities for assessing the reliability and resilience of silicon devices, from data gathered during design, manufacture, test, and in-field. Silicon data driven analytics provide new actionable insights to address the challenges posed to large scale silicon designs.

Learn More

featured paper

5 common Hall-effect sensor myths

Sponsored by Texas Instruments

Hall-effect sensors can be used in a variety of automotive and industrial systems. Higher system performance requirements created the need for improved accuracy and more integration – extending the use of Hall-effect sensors. Read this article to learn about common Hall-effect sensor misconceptions and see how these sensors can be used in real-world applications.

Click to read more

featured chalk talk

Reduce Power System Needs with Multichannel Power Monitors

Sponsored by Mouser Electronics and Microchip

Power monitors can be very effective in terms of power management for a variety of designs and the use of a multichannel power monitors can not only lower your overall system power but also lower your code overhead, simplify prototyping and event detection. In this episode of Chalk Talk, Amelia Dalton chats with Mitch Polonsky from Microchip about the benefits of multichannel power monitors and how Microchip’s PAC194x and PAC195x can help you monitor your power in your next design.

Click here for more information about Microchip Technology PAC194x & PAC195x Monitors