editor's blog
Subscribe Now

End-to-End Signal Analysis

When two chips talk to each other, they do so over a convoluted path that involves signals leaving a driver, going to a pad, up through a wire and other package interconnect, up and down and around along a board trace, and back into and through a package to another pad, finally arriving at the desired input. All along the way they brush up against other signals that may also be switching very quickly. Meanwhile, the power driving the output and input circuits may experience noise (and, in fact, that noise may be different on each chip). When you’ve got a lot of these signals that need to arrive with picosecond precision, such as is required with standards like the latest DDR versions, every part of the path matters.

Sigrity says that the traditional method of doing I/O analysis, using the IBIS models from the two chips, is no longer sufficient, especially when considering power noise and effects such as simultaneous switching noise (SSN). So they’ve just released SystemSI, which analyzes the entire path as a single entity, concurrently considering power noise and SSN as well as inter-symbol interference, crosstalk, reflections, and losses in both the conductors and dielectric. There’s a version for parallel busses and one for serial busses. They claim that it’s the first solution of its kind.

Sigrity uses what they call a “hybrid solver” approach involving both electromagnetic (EM, using both finite element – FE – and method of moment – MOM – approaches) and circuit simulation techniques. Says Leslie Landers, VP of Sales and Marketing, “For example, the hybrid solver assesses planes with FEM and transmission lines with MOM. This EM information is combined with circuit simulation. The benefit of the hybrid approach is in the ability to deliver both accuracy and efficient simulation run times that make it possible to evaluate entire structures (for example, large boards).”

More details in their release

Leave a Reply

featured blogs
Aug 13, 2020
My first computer put out a crazy 33 MHz of processing power from the 486 CPU. That was on “Turbo Mode” of course, and when it was turned off we were left with 16 MHz. Insert frowny face. Maybe you are too young to remember a turbo button, but if you aren’t ...
Aug 13, 2020
Hi readers! Welcome to Veri-Fire, a blog series that helps you deep dive into Virtuoso® ADE Verifier and learn about its various whys and hows. In this series, Walter Hartong, a Product... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Aug 13, 2020
Imagine ambling into a small town, heading to the nearest public house to blow the froth off a few cold beers, and hearing your AI whisper '€œ...'€...
Aug 7, 2020
[From the last episode: We looked at activation and what they'€™re for.] We'€™ve talked about the structure of machine-learning (ML) models and much of the hardware and math needed to do ML work. But there are some practical considerations that mean we may not directly us...

Featured Video

Product Update: New DesignWare USB4 IP Solution

Sponsored by Synopsys

Are you ready for USB4? Join Gervais Fong and Eric Huang to learn more about this new 40Gbps standard and Synopsys DesignWare IP that helps bring your USB4-enabled SoC to market faster.

Click here for more information about DesignWare USB4 IP

Featured Paper

Improving Performance in High-Voltage Systems With Zero-Drift Hall-Effect Current Sensing

Sponsored by Texas Instruments

Learn how major industry trends are driving demands for isolated current sensing, and how new zero-drift Hall-effect current sensors can improve isolation and measurement drift while simplifying the design process.

Click here for more information

Featured Chalk Talk

Hello FPGA

Sponsored by Mouser Electronics and Microchip

Getting started on an FPGA-based embedded vision project can be tricky. Locating all the components you need, getting them to talk to each other, and just getting your system to the video equivalent of “Hello World” is a pretty daunting task. In this episode of Chalk Talk, Amelia Dalton chats with Avery Williams of Microchip Technology about the Hello FPGA kit - a low-cost, low-touch embedded vision kit for engineers new to FPGAs.

More information about Microchip Technology Hello FPGA Kit