editor's blog
Subscribe Now

End-to-End Signal Analysis

When two chips talk to each other, they do so over a convoluted path that involves signals leaving a driver, going to a pad, up through a wire and other package interconnect, up and down and around along a board trace, and back into and through a package to another pad, finally arriving at the desired input. All along the way they brush up against other signals that may also be switching very quickly. Meanwhile, the power driving the output and input circuits may experience noise (and, in fact, that noise may be different on each chip). When you’ve got a lot of these signals that need to arrive with picosecond precision, such as is required with standards like the latest DDR versions, every part of the path matters.

Sigrity says that the traditional method of doing I/O analysis, using the IBIS models from the two chips, is no longer sufficient, especially when considering power noise and effects such as simultaneous switching noise (SSN). So they’ve just released SystemSI, which analyzes the entire path as a single entity, concurrently considering power noise and SSN as well as inter-symbol interference, crosstalk, reflections, and losses in both the conductors and dielectric. There’s a version for parallel busses and one for serial busses. They claim that it’s the first solution of its kind.

Sigrity uses what they call a “hybrid solver” approach involving both electromagnetic (EM, using both finite element – FE – and method of moment – MOM – approaches) and circuit simulation techniques. Says Leslie Landers, VP of Sales and Marketing, “For example, the hybrid solver assesses planes with FEM and transmission lines with MOM. This EM information is combined with circuit simulation. The benefit of the hybrid approach is in the ability to deliver both accuracy and efficient simulation run times that make it possible to evaluate entire structures (for example, large boards).”

More details in their release

Leave a Reply

featured blogs
Mar 31, 2023
Learn how (and why) the semiconductor industry is moving towards chiplet-enabled multi-die systems in our research piece in MIT's Technology Review Insights. The post An Industry-Wide Look at the Move Toward Multi-Die Systems appeared first on New Horizons for Chip Design....
Mar 31, 2023
The Verisium Debug platform is optimized for scalability, supporting debugging of simulation runs and emulation, where support for loading large source files and handling huge amounts of probe data is a must. Join this free Cadence Training Webinar to learn how to automate yo...
Mar 30, 2023
Are you in desperate need of a program manager to instigate a new project or rescue an existing project that is spiraling out of control?...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

Designing with GaN? Ask the Right Questions about Reliability
As demands for high-performance and low-cost power conversion increases, gallium nitride offers several intriguing benefits for next generation power supply design. In this episode of Chalk Talk, Amelia Dalton and Sandeep Bahl from Texas Instruments investigate the what, why and how of gallium nitride power technology. They take a closer look at the component level and in-system reliability for TI’s gallium nitride power solutions and why GaN might just be the perfect solution for your next power supply design.
Oct 4, 2022
22,846 views