editor's blog
Subscribe Now

End-to-End Signal Analysis

When two chips talk to each other, they do so over a convoluted path that involves signals leaving a driver, going to a pad, up through a wire and other package interconnect, up and down and around along a board trace, and back into and through a package to another pad, finally arriving at the desired input. All along the way they brush up against other signals that may also be switching very quickly. Meanwhile, the power driving the output and input circuits may experience noise (and, in fact, that noise may be different on each chip). When you’ve got a lot of these signals that need to arrive with picosecond precision, such as is required with standards like the latest DDR versions, every part of the path matters.

Sigrity says that the traditional method of doing I/O analysis, using the IBIS models from the two chips, is no longer sufficient, especially when considering power noise and effects such as simultaneous switching noise (SSN). So they’ve just released SystemSI, which analyzes the entire path as a single entity, concurrently considering power noise and SSN as well as inter-symbol interference, crosstalk, reflections, and losses in both the conductors and dielectric. There’s a version for parallel busses and one for serial busses. They claim that it’s the first solution of its kind.

Sigrity uses what they call a “hybrid solver” approach involving both electromagnetic (EM, using both finite element – FE – and method of moment – MOM – approaches) and circuit simulation techniques. Says Leslie Landers, VP of Sales and Marketing, “For example, the hybrid solver assesses planes with FEM and transmission lines with MOM. This EM information is combined with circuit simulation. The benefit of the hybrid approach is in the ability to deliver both accuracy and efficient simulation run times that make it possible to evaluate entire structures (for example, large boards).”

More details in their release

Leave a Reply

featured blogs
May 27, 2020
Could life evolve on ice worlds, ocean worlds, ocean worlds covered in ice, halo worlds that are tidally locked with their sun, and rogue worlds without a sun? If so, what sort of life might it be?...
May 26, 2020
I get pleasure from good quality things. Quality is a vague term, but, to me, it is some combination of good design for usability, functionality and aesthetics, along with reliability and durability. Some of these factors can be assessed very quickly; others take time. For ex...
May 26, 2020
#robotcombat #combatrobots #robotwars #WeWantSeason5 #WeGotSeason5 These are some of the most popular hashtags used by a growing number of global BattleBots enthusiasts. Teams from all backgrounds design, build and test robots of all sizes for one purpose in mind: Robot Comba...
May 22, 2020
[From the last episode: We looked at the complexities of cache in a multicore processor.] OK, time for a breather and for some review. We'€™ve taken quite the tour of computing, both in an IoT device (or even a laptop) and in the cloud. Here are some basic things we looked ...

Featured Video

DesignWare 112G Ethernet PHY IP JTOL & ITOL Performance

Sponsored by Synopsys

This video shows the Synopsys 112G Ethernet PHY IP in TSMC’s N7 process passing the jitter and interference tolerance test at the IEEE-specified bit error rate (BER). The IP with leading power, performance, and area is available in a range of FinFET processes for high-performance computing SoCs.

Click here for more information

Featured Paper

How LiDAR Delivers Critical Distance-Sensing for Self-Driving Cars

Sponsored by Maxim Integrated

Commercialization of autonomous cars represents an exciting journey ahead, and LiDAR technology in ADAS is right in line to become a significant player in the future of autonomous vehicles. Its performance depends on the optical front-end, as well as how the signal is transmitted through the signal chain and then processed. An important component in this signal chain is the transimpedance amplifier (TIA). Read more for an overview of how LiDAR works and what to look for in an effective TIA.

Click here to download the whitepaper