editor's blog
Subscribe Now

End-to-End Signal Analysis

When two chips talk to each other, they do so over a convoluted path that involves signals leaving a driver, going to a pad, up through a wire and other package interconnect, up and down and around along a board trace, and back into and through a package to another pad, finally arriving at the desired input. All along the way they brush up against other signals that may also be switching very quickly. Meanwhile, the power driving the output and input circuits may experience noise (and, in fact, that noise may be different on each chip). When you’ve got a lot of these signals that need to arrive with picosecond precision, such as is required with standards like the latest DDR versions, every part of the path matters.

Sigrity says that the traditional method of doing I/O analysis, using the IBIS models from the two chips, is no longer sufficient, especially when considering power noise and effects such as simultaneous switching noise (SSN). So they’ve just released SystemSI, which analyzes the entire path as a single entity, concurrently considering power noise and SSN as well as inter-symbol interference, crosstalk, reflections, and losses in both the conductors and dielectric. There’s a version for parallel busses and one for serial busses. They claim that it’s the first solution of its kind.

Sigrity uses what they call a “hybrid solver” approach involving both electromagnetic (EM, using both finite element – FE – and method of moment – MOM – approaches) and circuit simulation techniques. Says Leslie Landers, VP of Sales and Marketing, “For example, the hybrid solver assesses planes with FEM and transmission lines with MOM. This EM information is combined with circuit simulation. The benefit of the hybrid approach is in the ability to deliver both accuracy and efficient simulation run times that make it possible to evaluate entire structures (for example, large boards).”

More details in their release

Leave a Reply

featured blogs
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

The Future of Intelligent Devices is Here
Sponsored by Alif Semiconductor
In this episode of Chalk Talk, Amelia Dalton and Henrik Flodell from Alif Semiconductor explore the what, where, and how of Alif’s Ensemble 32-bit microcontrollers and fusion processors. They examine the autonomous intelligent power management, high on-chip integration and isolated security subsystem aspects of these 32-bit microcontrollers and fusion processors, the role that scalability plays in this processor family, and how you can utilize them for your next embedded design.
Aug 9, 2023
31,159 views