editor's blog
Subscribe Now

What Goes Around

Sitting through iSQED presentations on single-event-upset-tolerant circuits, I couldn’t help but notice the recurrent C2MOS moniker being tossed about. It was unclear to me whether it was stimulating some old, moldy memory or if that was just my imagination.

Some subsequent poking around to learn more proved harder than I expected. The term is tossed out here and there, but it was actually really difficult to confirm what it stands for: Clocked CMOS.

And then I saw a reference to it from 1973: this clearly isn’t new technology. So it is entirely possible that we skimmed through it in my college logic class as one of many digital curiosities.

But it’s apparently being taken seriously today: activity is up since the mid-2000s. The benefit appears to be that latches and flip-flops are much less sensitive to clock overlap issues and race conditions (although they don’t eliminate the normal setup requirements between data and clock.)

A C2MOS latch is really simple. Picture an inverter, which is a two-transistor stack, a P over an N. Now insert another complementary pair of transistors into this stack, so now you have two Ps over two Ns. You drive the added N by CLK and the added P by /CLK. The clock inverter pair isolates the effects of changes to the data from the output. So you set up new data, and only when you toggle the clock are the new values presented to the output. (Some versions show a small keeper on the output since, after the clock reverts back, this is a high-impedance node.)

With this setup, once the new latch data is in place, it doesn’t matter how well timed the CLK and /CLK lines are: the data P and N transistors guarantee the stack to be in a high-impedance state, so you won’t get any crowbar current. (You can get into trouble if the CLK rise and fall times are two slow, but that’s easy to fix. Easy for me to say…)

It is presumably this robustness that is bringing the design style back into favor in circuits that have to be tolerant of an inhospitable welcome.

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Switch to Simple with Klippon Relay
In this episode of Chalk Talk, Amelia Dalton and Lars Hohmeier from Weidmüller explore the what, where, and how of Weidmüller's extensive portfolio of Klippon relays. They investigate the pros and cons of mechanical relays, the benefits that the Klippon universal range of relays brings to the table, and how Weidmüller's digital selection guide can help you choose the best relay solution for your next design.
Sep 26, 2023
29,177 views