editor's blog
Subscribe Now

Shine a Light

Light is full of energy; it’s just that we can’t do much with that energy directly. Whether we’re trying to use the energy to power our world or simply to detect the light itself, we have to extract it. This typically means converting the light to some other more useful form of energy.

There are two fundamental kinds of light conversion: ones that turn light into other light and ones that turn light into electric current or voltage.

The first category is referred to generically as luminescence. There are two kinds of luminescence, which depend on the light and material. When light is absorbed and immediately re-emitted at a different frequency, it’s called fluorescence – as seen in a fluorescent lightbulb. When the light is re-emitted more slowly over time due to illegal quantum state interactions of some sort that slow the process down, it’s called phosphorescence. The phosphorescent delay is familiar in glow-in-the-dark materials, where the light is absorbed and then re-emitted gradually.

When fluorescence involves ionizing radiation, like X-rays, which have enough energy to knock electrons out of an atom, then the resulting re-emission (in the visible range) is referred to as scintillation.

When converting light to electrical voltage or current, there are also several mechanisms. A very simple phenomenon is photoconductivity, where the conductivity of a material (in particular, a semiconductor) is improved because the energy of incident light is bumping more electrons into the conduction band.

There are two other closely-related effects that can result in electrons being knocked about. In the photovoltaic effect, electrons are transferred between bands, creating a potential between electrodes. With the photoelectric effect, the electrons are completely ejected from the atom and are free to roam about the cabin.

Leave a Reply

featured blogs
Mar 21, 2023
We explain computational lithography and explore how our partnership with NVIDIA accelerates semiconductor scaling and the chip design flow in the AI age. The post How Synopsys and NVIDIA Are Accelerating Semiconductor Scaling in the AI Age appeared first on New Horizons for...
Mar 20, 2023
Electronic design has evolved over the years to provide methods for optimizing power, space, and energy needs for the most demanding market applications in areas including hyperscale computing, consumer, 5G communications, automotive, mobile, aerospace, industrial, and health...
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

How IO-Link® is Enabling Smart Factory Digitization -- Analog Devices and Mouser Electronics
Safety, flexibility and sustainability are cornerstone to today’s smart factories. In this episode of Chalk Talk, Amelia Dalton and Shasta Thomas from Analog Devices discuss how Analog Device’s IO-Link is helping usher in a new era of smart factory automation. They take a closer look at the benefits that IO-Link can bring to an industrial factory environment, the biggest issues facing IO-Link sensor and master designs and how Analog Devices ??can help you with your next industrial design.
Feb 2, 2023
6,869 views