editor's blog
Subscribe Now

Shine a Light

Light is full of energy; it’s just that we can’t do much with that energy directly. Whether we’re trying to use the energy to power our world or simply to detect the light itself, we have to extract it. This typically means converting the light to some other more useful form of energy.

There are two fundamental kinds of light conversion: ones that turn light into other light and ones that turn light into electric current or voltage.

The first category is referred to generically as luminescence. There are two kinds of luminescence, which depend on the light and material. When light is absorbed and immediately re-emitted at a different frequency, it’s called fluorescence – as seen in a fluorescent lightbulb. When the light is re-emitted more slowly over time due to illegal quantum state interactions of some sort that slow the process down, it’s called phosphorescence. The phosphorescent delay is familiar in glow-in-the-dark materials, where the light is absorbed and then re-emitted gradually.

When fluorescence involves ionizing radiation, like X-rays, which have enough energy to knock electrons out of an atom, then the resulting re-emission (in the visible range) is referred to as scintillation.

When converting light to electrical voltage or current, there are also several mechanisms. A very simple phenomenon is photoconductivity, where the conductivity of a material (in particular, a semiconductor) is improved because the energy of incident light is bumping more electrons into the conduction band.

There are two other closely-related effects that can result in electrons being knocked about. In the photovoltaic effect, electrons are transferred between bands, creating a potential between electrodes. With the photoelectric effect, the electrons are completely ejected from the atom and are free to roam about the cabin.

Leave a Reply

featured blogs
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Sep 17, 2021
Dear BoardSurfers, I want to unapologetically hijack the normal news and exciting feature information that you are accustomed to reading about in the world of PCB Design blogs to eagerly let you know... [[ Click on the title to access the full blog on the Cadence Community s...
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

ARC® Processor Virtual Summit 2021

Sponsored by Synopsys

Designing an embedded SoC? Attend the ARC Processor Virtual Summit on Sept 21-22 to get in-depth information from industry leaders on the latest ARC processor IP and related hardware and software technologies that enable you to achieve differentiation in your chip or system design.

Click to read more

featured paper

Seamlessly connect your world with 16 new wireless MCUs for the 2.4-GHz and Sub-1-GHz bands

Sponsored by Texas Instruments

Low-power wireless microcontroller (MCU) shipments are expected to double over the next four years to more than 4 billion units. This massive influx of MCUs will result in more opportunities for wireless connectivity than ever before, with growth across a wide range of applications and technologies. With the addition of 16 new wireless connectivity devices, we are empowering you to innovate, scale and accelerate the deployment of wireless connectivity – no matter what or how you are connecting.

Click to read more

featured chalk talk

Medical Device Security

Sponsored by Siemens Digital Industries Software

In the new era of connected medical devices, securing embedded systems has become more important than ever. But, there is a lot medical device designers can borrow from current best-practices for embedded security in general. In this episode of Chalk Talk, Amelia Dalton chats with Robert Bates from Mentor about strategies and challenges for securing modern medical devices and systems.

Click here to download the whitepaper, "Medical Device Security: Achieving Regulatory Approval"