editor's blog
Subscribe Now

Xilinx’s Crossover

Xilinx announced their new Zynq family a while back, and now they’re working the positioning to further clarify why it’s different from past processor+FPGA combo chips. At Mentor’s U2U, Xilinx CTO Ivo Bolsens described Zynq as a “crossover” chip, sharing the characteristics of an FPGA, ASSP, and ASIC.

And here’s what he said makes the critical difference: coherency. An FPGA typically resides outside the processor’s known realm, and is responsible for managing its own memory – and for keeping the contents consistent with the main CPU memory if necessary.

In Zynq, by contrast, the FPGA gets access to the main memory. That means less data copying, since the processor can simply send a pointer to the FPGA for some accelerated function. The FPGA and the CPU are, more or less, peers – it’s multicore with shared memory, only with one of the cores being an FPGA. And the FPGA doesn’t need its own memory manager.

As subtle as that seems, it can make a big difference in how you conceptualize the interplay between CPU and FPGA. And, presumably, removes some glue logic and speeds performance.

Leave a Reply

featured blogs
Jul 3, 2020
[From the last episode: We looked at CNNs for vision as well as other neural networks for other applications.] We'€™re going to take a quick detour into math today. For those of you that have done advanced math, this may be a review, or it might even seem to be talking down...
Jul 2, 2020
Using the bitwise operators in general, and employing them to perform masking operations in particular, can be extremely efficacious....
Jul 2, 2020
In June, we continued to upgrade several key pieces of content across the website, including more interactive product explorers on several pages and a homepage refresh. We also made a significant update to our product pages which allows logged-in users to see customer-specifi...

Featured Video

Product Update: Advances in DesignWare Die-to-Die PHY IP

Sponsored by Synopsys

Hear the latest about Synopsys' DesignWare Die-to-Die PHY IP for SerDes-based 112G USR/XSR and parallel-based HBI interfaces. The IP, available in advanced FinFET processes, addresses the power, bandwidth, and latency requirements of high-performance computing SoCs targeting hyperscale data center, AI, and networking applications.

Click here for more information about DesignWare Die-to-Die PHY IP Solutions

Featured Paper

Cryptography: How It Helps in Our Digital World

Sponsored by Maxim Integrated

Gain a basic understanding of how cryptography works and how cryptography can help you protect your designs from security threats.

Click here to download the whitepaper

Featured Chalk Talk

RF Interconnect for Wireless Applications

Sponsored by Mouser Electronics and Amphenol RF

The 5G revolution puts daunting demands on antenna technology. With massive MIMO and mm wave, 5g opens a whole new era in antenna solutions. In this episode of Chalk Talk, Amelia Dalton chats with Owen Barthelmes and Kelly Freeman of Amphenol RF about 5G antenna technology, and how Amphenol RF’s HD-EFI connector solution can help you with your next 5G design.

Click here for more info about Amphenol RF 5G Wireless Connectors