editor's blog
Subscribe Now

Get Wreal

When analog design discussions turn to simulation, especially when they involve Cadence, one inevitably comes up against the unfortunately-named concept of the “wreal” type. I say “unfortunately” because, pronounced with standard English rules, it’s pronounced “real,” providing no audible distinction from the “real” type. So it’s typically pronounced “double-you-real.” (Or occasionally you’ll hear “wuh-real.”) Yeah, unfortunate.

It’s also difficult to find information on exactly what it is and the context driving its use. It’s easy to learn that it can make some simulation faster, but, somehow, from there you end up diving way down into the nitty gritty of differences between the Verilog-AMS version and Cadence’s version and specific problems being discussed in forums and… well… let’s just try to back up a bit. I was able to talk to Mladen Nizic, a Cadence engineering director, in an attempt to articulate a big-picture statement of the role of the wreal.

First some background. Analog and digital simulators fundamentally work differently. An analog simulator attempts to calculate the state or operating point of a complete circuit. It’s a static, holistic, matrix calculation that is then repeated over very small time increments in an attempt to model continuous time. At any given time, the voltage and current are known for any node.

By contrast, digital simulators model the flow of signals from stimulus to response, driven by events, and they assume the discrete time behavior afforded by a clock. There are no voltages or currents, only 1s and 0s. (And Xs.)

Wreal signals help to bridge the divide between pure analog simulation and full-chip analog/mixed-signal (AMS) simulation. This is necessary for two reasons: AMS simulation must account for the preponderance of digital content, and the size of these chips means that higher simulation performance is needed than would be remotely possible if you tried to simulate the entire chip at an analog level.

With a wreal signal, you can take a voltage or current (but not both) between modules of the full chip. It can operate in a signal-flow fashion, behaving more like a digital signal. This allows it to play nicely in the digital simulation paradigm.

Cadence has made some extensions to the standard wreal:

–          You can typecast signals to/from wreal

–          You can have arrays of wreals

–          You can have multiple drivers on a wreal signal (and the tool will resolve the correct voltage or current)

You still need to do your full analog simulation to make sure your analog module is working properly, but you can now integrate the analog block into your full-chip simulation to make sure that it plays nicely with everything else.

 

When discussions of analog simulation [B1] arise, especially when they involve Cadence, one inevitably comes up against the unfortunately-named concept of the “wreal” type. I say “unfortunately” because, pronounced with standard English rules, it’s pronounced “real,” providing no audible distinction from the “real” type. So it’s typically pronounced “double-you-real.” (Or occasionally you’ll hear “wuh-real.”) Yeah, unfortunate.

It’s also difficult to find information on exactly what it is and the context driving its use. It’s easy to learn that it can make some simulation faster, but, somehow, from there you end up diving way down into the nitty gritty of differences between the Verilog-AMS version and Cadence’s version and specific problems being discussed in forums and… well… let’s just try to back up a bit. I was able to talk to Mladen Nizic, a Cadence engineering director, in an attempt to articulate a big-picture statement of the role of the wreal.

First some background. Analog and digital simulators fundamentally work differently. An analog simulator attempts to calculate the state or operating point of a complete circuit. It’s a static, holistic, matrix calculation that is then repeated over very small time increments in an attempt to model continuous time. At any given time, the voltage and current are known for any node.

By contrast, digital simulators model the flow of signals from stimulus to response, driven by events, and they assume the discrete time behavior afforded by a clock. There are no voltages or currents, only 1s and 0s. (And Xs.)

Wreal signals help to bridge the divide between pure analog simulation and full-chip analog/mixed-signal (AMS) simulation. This is necessary for two reasons: AMS simulation must account for the preponderance of digital content, and the size of these chips means that higher simulation performance is needed than would be remotely possible if you tried to simulate the entire chip at an analog level.

With a wreal signal, you can take a voltage or current (but not both) between modules of the full chip. It can operate in a signal-flow fashion, behaving more like a digital signal. This allows it to play nicely in the digital simulation paradigm.

Cadence has made some extensions to the standard wreal:

          You can typecast signals to/from wreal

          You can have arrays of wreals

          You can have multiple drivers on a wreal signal (and the tool will resolve the correct voltage or current)

You still need to do your full analog simulation to make sure your analog module is working properly, but you can now integrate the analog block into your full-chip simulation to make sure that it plays nicely with everything else.


 [B1]Link to surrender article

Leave a Reply

featured blogs
May 16, 2021
https://youtu.be/_wup2MSTVks Made on Communication Hill, San Jose (camera Carey Guo) Monday: Intel eASIC: Linley and DARPA Tuesday: Please Excuse the Mesh: CFD and Pointwise Wednesday: Linley:... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
May 13, 2021
Samtec will attend the PCI-SIG Virtual Developers Conference on Tuesday, May 25th through Wednesday, May 26th, 2021. This is a free event for the 800+ member companies that develop and bring to market new products utilizing PCI Express technology. Attendee Registration is sti...
May 13, 2021
Our new IC design tool, PrimeSim Continuum, enables the next generation of hyper-convergent IC designs. Learn more from eeNews, Electronic Design & EE Times. The post Synopsys Makes Headlines with PrimeSim Continuum, an Innovative Circuit Simulation Solution appeared fi...
May 13, 2021
By Calibre Design Staff Prior to the availability of extreme ultraviolet (EUV) lithography, multi-patterning provided… The post A SAMPle of what you need to know about SAMP technology appeared first on Design with Calibre....

featured video

Industry’s First USB4 Silicon Success

Sponsored by Synopsys

USB4 offers up to 40Gbps speeds for incredibly fast connections. Join Synopsys to see the first demonstration of USB4 IP in silicon, along with real TX eyes for DesignWare USB4, DisplayPort, and USB 3.x IP.

Click here for more information about DesignWare USB4 IP

featured paper

USB-C and USB Power Delivery Solutions

Sponsored by Maxim Integrated

Every electronic market is rapidly adopting the latest USB Type-C® and USB Power Delivery (USB-PD) specifications. The new USB Type-C cable and connector specifications dramatically simplify the way we interconnect and power electronic gadgets. With the proliferation of battery-operated devices for consumer, medical, automotive, and industrial applications, USB-C is increasingly becoming the preferred universal standard for charging and powering of devices.

Click to download

Featured Chalk Talk

Transforming 400V Power for SELV Systems

Sponsored by Mouser Electronics and Vicor

Converting from distribution-friendly voltages like 400V down to locally-useful voltages can be a tough engineering challenge. In SELV systems, many teams turn to BCM converter modules because of their efficiency, form factor, and ease of design-in. In this episode of Chalk Talk, Amelia Dalton chats with Ian Masza of Vicor about transforming 400V into power for SELV systems.

Click here for more information about Products by Vicor