editor's blog
Subscribe Now

Get Wreal

When analog design discussions turn to simulation, especially when they involve Cadence, one inevitably comes up against the unfortunately-named concept of the “wreal” type. I say “unfortunately” because, pronounced with standard English rules, it’s pronounced “real,” providing no audible distinction from the “real” type. So it’s typically pronounced “double-you-real.” (Or occasionally you’ll hear “wuh-real.”) Yeah, unfortunate.

It’s also difficult to find information on exactly what it is and the context driving its use. It’s easy to learn that it can make some simulation faster, but, somehow, from there you end up diving way down into the nitty gritty of differences between the Verilog-AMS version and Cadence’s version and specific problems being discussed in forums and… well… let’s just try to back up a bit. I was able to talk to Mladen Nizic, a Cadence engineering director, in an attempt to articulate a big-picture statement of the role of the wreal.

First some background. Analog and digital simulators fundamentally work differently. An analog simulator attempts to calculate the state or operating point of a complete circuit. It’s a static, holistic, matrix calculation that is then repeated over very small time increments in an attempt to model continuous time. At any given time, the voltage and current are known for any node.

By contrast, digital simulators model the flow of signals from stimulus to response, driven by events, and they assume the discrete time behavior afforded by a clock. There are no voltages or currents, only 1s and 0s. (And Xs.)

Wreal signals help to bridge the divide between pure analog simulation and full-chip analog/mixed-signal (AMS) simulation. This is necessary for two reasons: AMS simulation must account for the preponderance of digital content, and the size of these chips means that higher simulation performance is needed than would be remotely possible if you tried to simulate the entire chip at an analog level.

With a wreal signal, you can take a voltage or current (but not both) between modules of the full chip. It can operate in a signal-flow fashion, behaving more like a digital signal. This allows it to play nicely in the digital simulation paradigm.

Cadence has made some extensions to the standard wreal:

–          You can typecast signals to/from wreal

–          You can have arrays of wreals

–          You can have multiple drivers on a wreal signal (and the tool will resolve the correct voltage or current)

You still need to do your full analog simulation to make sure your analog module is working properly, but you can now integrate the analog block into your full-chip simulation to make sure that it plays nicely with everything else.

 

When discussions of analog simulation [B1] arise, especially when they involve Cadence, one inevitably comes up against the unfortunately-named concept of the “wreal” type. I say “unfortunately” because, pronounced with standard English rules, it’s pronounced “real,” providing no audible distinction from the “real” type. So it’s typically pronounced “double-you-real.” (Or occasionally you’ll hear “wuh-real.”) Yeah, unfortunate.

It’s also difficult to find information on exactly what it is and the context driving its use. It’s easy to learn that it can make some simulation faster, but, somehow, from there you end up diving way down into the nitty gritty of differences between the Verilog-AMS version and Cadence’s version and specific problems being discussed in forums and… well… let’s just try to back up a bit. I was able to talk to Mladen Nizic, a Cadence engineering director, in an attempt to articulate a big-picture statement of the role of the wreal.

First some background. Analog and digital simulators fundamentally work differently. An analog simulator attempts to calculate the state or operating point of a complete circuit. It’s a static, holistic, matrix calculation that is then repeated over very small time increments in an attempt to model continuous time. At any given time, the voltage and current are known for any node.

By contrast, digital simulators model the flow of signals from stimulus to response, driven by events, and they assume the discrete time behavior afforded by a clock. There are no voltages or currents, only 1s and 0s. (And Xs.)

Wreal signals help to bridge the divide between pure analog simulation and full-chip analog/mixed-signal (AMS) simulation. This is necessary for two reasons: AMS simulation must account for the preponderance of digital content, and the size of these chips means that higher simulation performance is needed than would be remotely possible if you tried to simulate the entire chip at an analog level.

With a wreal signal, you can take a voltage or current (but not both) between modules of the full chip. It can operate in a signal-flow fashion, behaving more like a digital signal. This allows it to play nicely in the digital simulation paradigm.

Cadence has made some extensions to the standard wreal:

          You can typecast signals to/from wreal

          You can have arrays of wreals

          You can have multiple drivers on a wreal signal (and the tool will resolve the correct voltage or current)

You still need to do your full analog simulation to make sure your analog module is working properly, but you can now integrate the analog block into your full-chip simulation to make sure that it plays nicely with everything else.


 [B1]Link to surrender article

Leave a Reply

featured blogs
Feb 27, 2021
New Edge Rate High Speed Connector Set Is Micro, Rugged Years ago, while hiking the Colorado River Trail in Rocky Mountain National Park with my two sons, the older one found a really nice Swiss Army Knife. By “really nice” I mean it was one of those big knives wi...
Feb 26, 2021
OMG! Three 32-bit processor cores each running at 300 MHz, each with its own floating-point unit (FPU), and each with more memory than you than throw a stick at!...
Feb 26, 2021
In the SPECTRE 20.1 base release, we released Spectre® XDP-HB as part of the new Spectre X-RF simulation technology. Spectre XDP-HB uses a highly distributed multi-machine multi-core simulation... [[ Click on the title to access the full blog on the Cadence Community si...

featured video

Designing your own Processor with ASIP Designer

Sponsored by Synopsys

Designing your own processor is time-consuming and resource intensive, and it used to be limited to a few experts. But Synopsys’ ASIP Designer tool allows you to design your own specialized processor within your deadline and budget. Watch this video to learn more.

Click here for more information

featured paper

How to Fast-Charge Your Supercapacitor

Sponsored by Maxim Integrated

Supercapacitors (or ultracapacitors) are suited for short charge and discharge cycles. They require high currents for fast charge as well as a high voltage with a high number in series as shown in two usage cases: an automatic pallet shuttle and a fail-safe backup system. In these and many other cases, the fast charge is provided by a flexible, high-efficiency, high-voltage, and high-current charger based on a synchronous, step-down, supercapacitor charger controller.

Click here to download the whitepaper

Featured Chalk Talk

Evaluation and Development Kits

Sponsored by Samtec

With signal integrity becoming increasingly challenging in today’s designs, interconnect is taking on a key role. In order to see how a particular interconnect solution will perform in our design, we really need hands-on evaluation of the technology. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns of Samtec about evaluation and development kits for high-speed interconnect solutions.

More information about Samtec Evaluation and Development Kits