editor's blog
Subscribe Now

Dude, That’s So Random

Many of us grew up knowing that you can’t have truly random numbers in your algorithms or circuits. The best you can do is “pseudo-random,” which means take a non-random number and shake it up really hard so it looks random. But… if you start with the same number every time, then you’ll end up with the same sequence every time.

Oh yeah, that’s the other thing: pseudo-random number generators (PNRGs) are all about sequences. You seed the thing with a value, and, from then on, it supplies a stream of numbers in an unpredictable (for practical purposes) fashion like a Pez dispenser where you don’t know what color is going to come up next.

So it’s all about the seed, and it’s been very hard to produce seeds that are truly random.

Actually, there’s even a problem with the concept of “truly random”: it’s not that simple. If you have an 8-bit field that unpredictably generates one of 5 values, well, that’s kind of random. But you could be generating one of 256 values to make full use of the 8 bits. Such a scheme would be said to have low entropy; most of the 8 bits aren’t, in fact, random at all.

We looked at some aspects of hardware randomness in our article on physically unclonable functions (PUFs) a few months back. One of the companies we covered, Intrinsic ID, has just announced a new random number generator, iRNG, based on the technology they use for their PUF. It makes use of the noise inherent in the power-up of SRAM bits.

If you look at their basic drawing, they have a conditioned “true random seed” coming from their “entropy source” that feeds a DRBG, which stands for “deterministic random bitstream generator.” And if you go to Wikipedia and look that up, it takes you to the page for PRNGs. In other words, a DRBG is another name for a PRNG. And I can totally understand how they would not want the phrase “pseudo-random” showing up anywhere in marketing materials that are trying to convey a message of “true” randomness.

However, this is simply a case of the PRNG we’ve been talking about, only now fed by a seed that they say is truly random. Of course, since there’s no such thing as “truly” random, then how random is it? They claim “high entropy” (and they can probably quantify that for a given technology). But we can get a sense from thinking about the underlying mechanism.

An SRAM bit is more or less a bistable element that, in the extreme, is very well balanced so that, as it’s powering up in a perfectly noiseless environment, it would have an equal chance of toppling over into a 1 state or a 0 state. The opposite extreme can be seen in flip-flops that have been explicitly biased to come up in a predictable state by intentionally unbalancing things.

Real SRAM cells, even if designed perfectly, won’t be perfect due to process variations. Intrisic ID uses a 2-kbit memory; each of those bits will be ever so slightly different. Some will be subtly biased to come up 0, some to come up 1. Each chip will be different, so you certainly have a situation where no two systems will behave alike.

If the power-up conditions were perfect and noiseless, then each of these systems would come up the same way each time except for those bits that happened to be perfectly poised – giving you some level of non-zero entropy.

But noiseless is impossible. (At some point I assume even quantum fluctuations would play a part.) So high entropy comes in if the noise available is high enough – and unpredictable enough – that even those bits subtly biased in one direction or another can still be pushed over to the other side. Instead of a 50/50 chance of a 1 or 0, perhaps you’ve got a 70/30 chance.

So, just as the 5-value randomness didn’t make complete use of an 8-bit field above, here also, the entropy you get won’t make use of the full 2-kbit field. But if you’re getting a good percentage of those bits to be random, well, that’s still a pretty wide field.

So the key to the Intrinsic ID is this SRAM plus the conditioning; the DRBG/PRNG is designed to meet the requirements of various security standards. SRAM aside, this is available as hardware or software IP.

More info in the release

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding the Foundations of Quiescent Current in Linear Power Systems

Sponsored by Texas Instruments

Minimizing power consumption is an important design consideration, especially in battery-powered systems that utilize linear regulators or low-dropout regulators (LDOs). Read this new whitepaper to learn the fundamentals of IQ in linear-power systems, how to predict behavior in dropout conditions, and maintain minimal disturbance during the load transient response.

Click here to download the whitepaper

featured chalk talk

TI Robotics System Learning Kit

Sponsored by Mouser Electronics and Texas Instruments

Robotics projects can get complicated quickly, and finding a set of components, controllers, networking, and software that plays nicely together is a real headache. In this episode of Chalk Talk, Amelia Dalton chats with Mark Easley of Texas Instruments about the TI-RSLK Robotics Kit, which will get you up and running on your next robotics project in no time.

Click here for more information about the Texas Instruments TIRSLK-EVM Robotics System Lab Kit