editor's blog
Subscribe Now

Dude, That’s So Random

Many of us grew up knowing that you can’t have truly random numbers in your algorithms or circuits. The best you can do is “pseudo-random,” which means take a non-random number and shake it up really hard so it looks random. But… if you start with the same number every time, then you’ll end up with the same sequence every time.

Oh yeah, that’s the other thing: pseudo-random number generators (PNRGs) are all about sequences. You seed the thing with a value, and, from then on, it supplies a stream of numbers in an unpredictable (for practical purposes) fashion like a Pez dispenser where you don’t know what color is going to come up next.

So it’s all about the seed, and it’s been very hard to produce seeds that are truly random.

Actually, there’s even a problem with the concept of “truly random”: it’s not that simple. If you have an 8-bit field that unpredictably generates one of 5 values, well, that’s kind of random. But you could be generating one of 256 values to make full use of the 8 bits. Such a scheme would be said to have low entropy; most of the 8 bits aren’t, in fact, random at all.

We looked at some aspects of hardware randomness in our article on physically unclonable functions (PUFs) a few months back. One of the companies we covered, Intrinsic ID, has just announced a new random number generator, iRNG, based on the technology they use for their PUF. It makes use of the noise inherent in the power-up of SRAM bits.

If you look at their basic drawing, they have a conditioned “true random seed” coming from their “entropy source” that feeds a DRBG, which stands for “deterministic random bitstream generator.” And if you go to Wikipedia and look that up, it takes you to the page for PRNGs. In other words, a DRBG is another name for a PRNG. And I can totally understand how they would not want the phrase “pseudo-random” showing up anywhere in marketing materials that are trying to convey a message of “true” randomness.

However, this is simply a case of the PRNG we’ve been talking about, only now fed by a seed that they say is truly random. Of course, since there’s no such thing as “truly” random, then how random is it? They claim “high entropy” (and they can probably quantify that for a given technology). But we can get a sense from thinking about the underlying mechanism.

An SRAM bit is more or less a bistable element that, in the extreme, is very well balanced so that, as it’s powering up in a perfectly noiseless environment, it would have an equal chance of toppling over into a 1 state or a 0 state. The opposite extreme can be seen in flip-flops that have been explicitly biased to come up in a predictable state by intentionally unbalancing things.

Real SRAM cells, even if designed perfectly, won’t be perfect due to process variations. Intrisic ID uses a 2-kbit memory; each of those bits will be ever so slightly different. Some will be subtly biased to come up 0, some to come up 1. Each chip will be different, so you certainly have a situation where no two systems will behave alike.

If the power-up conditions were perfect and noiseless, then each of these systems would come up the same way each time except for those bits that happened to be perfectly poised – giving you some level of non-zero entropy.

But noiseless is impossible. (At some point I assume even quantum fluctuations would play a part.) So high entropy comes in if the noise available is high enough – and unpredictable enough – that even those bits subtly biased in one direction or another can still be pushed over to the other side. Instead of a 50/50 chance of a 1 or 0, perhaps you’ve got a 70/30 chance.

So, just as the 5-value randomness didn’t make complete use of an 8-bit field above, here also, the entropy you get won’t make use of the full 2-kbit field. But if you’re getting a good percentage of those bits to be random, well, that’s still a pretty wide field.

So the key to the Intrinsic ID is this SRAM plus the conditioning; the DRBG/PRNG is designed to meet the requirements of various security standards. SRAM aside, this is available as hardware or software IP.

More info in the release

Leave a Reply

featured blogs
Jun 23, 2021
Sr. VP of Engineering Jumana Muwafi explains the role of semiconductor IP development in electronic design automation & shares advice for women in leadership. The post Q&A with Jumana Muwafi, Sr. VP of Engineering: Pushing the Envelope on IP Innovation appeared fir...
Jun 23, 2021
PCB design complexities increase with the increase in the number of parts and layers in a design. For creating these complex designs with maximum efficiency, the design tool should be equipped with... [[ Click on the title to access the full blog on the Cadence Community sit...
Jun 23, 2021
Samtec presented a proof-of-concept demonstration of our new waveguide technology at IMS 2021 in Atlanta, Georgia. In this video, filmed at the show, Mike Dunne, Samtec’s Director of RF Business Development, gives us an update on the new technology and walks us through ...
Jun 21, 2021
By James Paris Last Saturday was my son's birthday and we had many things to… The post Time is money'¦so why waste it on bad data? appeared first on Design with Calibre....

featured video

Kyocera Super Resolution Printer with ARC EV Vision IP

Sponsored by Synopsys

See the amazing image processing features that Kyocera’s TASKalfa 3554ci brings to their customers.

Click here for more information about DesignWare ARC EV Processors for Embedded Vision

featured paper

An FPGA-Based Solution for a Graph Neural Network Accelerator

Sponsored by Achronix

Graph Neural Networks (GNN) drive high demand for compute and memory performance and a software only based implementation of a GNN does not meet performance targets. As a result, there is an urgent need for hardware-based GNN acceleration. While traditional convolutional neural network (CNN) hardware acceleration has many solutions, the hardware acceleration of GNN has not been fully discussed and researched. This white paper reviews the latest GNN algorithms, the current status of acceleration technology research, and discusses FPGA-based GNN acceleration technology.

Click to read more

featured chalk talk

WiFi 6 & 6E: Strengthening Smart Home Enablement

Sponsored by Mouser Electronics and Qorvo

Demands on WiFi are growing exponentially, and our aging standards and technology are struggling to keep up. Luckily, WiFi 6 and 6E represent a leap in WiFi capabilities for our systems. In this episode of Chalk Talk, Amelia Dalton chats with Tony Testa of Qorvo about the ins and outs of WiFi 6 and 6E with their increased speed, capacity, and efficiency.

Click here for more information about Qorvo Wi-Fi® 6 Solution