editor's blog
Subscribe Now

Dude, That’s So Random

Many of us grew up knowing that you can’t have truly random numbers in your algorithms or circuits. The best you can do is “pseudo-random,” which means take a non-random number and shake it up really hard so it looks random. But… if you start with the same number every time, then you’ll end up with the same sequence every time.

Oh yeah, that’s the other thing: pseudo-random number generators (PNRGs) are all about sequences. You seed the thing with a value, and, from then on, it supplies a stream of numbers in an unpredictable (for practical purposes) fashion like a Pez dispenser where you don’t know what color is going to come up next.

So it’s all about the seed, and it’s been very hard to produce seeds that are truly random.

Actually, there’s even a problem with the concept of “truly random”: it’s not that simple. If you have an 8-bit field that unpredictably generates one of 5 values, well, that’s kind of random. But you could be generating one of 256 values to make full use of the 8 bits. Such a scheme would be said to have low entropy; most of the 8 bits aren’t, in fact, random at all.

We looked at some aspects of hardware randomness in our article on physically unclonable functions (PUFs) a few months back. One of the companies we covered, Intrinsic ID, has just announced a new random number generator, iRNG, based on the technology they use for their PUF. It makes use of the noise inherent in the power-up of SRAM bits.

If you look at their basic drawing, they have a conditioned “true random seed” coming from their “entropy source” that feeds a DRBG, which stands for “deterministic random bitstream generator.” And if you go to Wikipedia and look that up, it takes you to the page for PRNGs. In other words, a DRBG is another name for a PRNG. And I can totally understand how they would not want the phrase “pseudo-random” showing up anywhere in marketing materials that are trying to convey a message of “true” randomness.

However, this is simply a case of the PRNG we’ve been talking about, only now fed by a seed that they say is truly random. Of course, since there’s no such thing as “truly” random, then how random is it? They claim “high entropy” (and they can probably quantify that for a given technology). But we can get a sense from thinking about the underlying mechanism.

An SRAM bit is more or less a bistable element that, in the extreme, is very well balanced so that, as it’s powering up in a perfectly noiseless environment, it would have an equal chance of toppling over into a 1 state or a 0 state. The opposite extreme can be seen in flip-flops that have been explicitly biased to come up in a predictable state by intentionally unbalancing things.

Real SRAM cells, even if designed perfectly, won’t be perfect due to process variations. Intrisic ID uses a 2-kbit memory; each of those bits will be ever so slightly different. Some will be subtly biased to come up 0, some to come up 1. Each chip will be different, so you certainly have a situation where no two systems will behave alike.

If the power-up conditions were perfect and noiseless, then each of these systems would come up the same way each time except for those bits that happened to be perfectly poised – giving you some level of non-zero entropy.

But noiseless is impossible. (At some point I assume even quantum fluctuations would play a part.) So high entropy comes in if the noise available is high enough – and unpredictable enough – that even those bits subtly biased in one direction or another can still be pushed over to the other side. Instead of a 50/50 chance of a 1 or 0, perhaps you’ve got a 70/30 chance.

So, just as the 5-value randomness didn’t make complete use of an 8-bit field above, here also, the entropy you get won’t make use of the full 2-kbit field. But if you’re getting a good percentage of those bits to be random, well, that’s still a pretty wide field.

So the key to the Intrinsic ID is this SRAM plus the conditioning; the DRBG/PRNG is designed to meet the requirements of various security standards. SRAM aside, this is available as hardware or software IP.

More info in the release

Leave a Reply

featured blogs
Jan 26, 2022
With boards becoming more complex and lightweight at the same time, designing and manufacturing a cost-effective and reliable PCB has assumed greater significance than ever before. Inaccurate or... [[ Click on the title to access the full blog on the Cadence Community site. ...
Jan 26, 2022
PCIe 5.0 designs are currently in massive deployment; learn about the standard and explore PCIe 5.0 applications and the importance of silicon-proven IP. The post The PCI Express 5.0 Superhighway Is Wide, Fast, and Ready for Your Designs appeared first on From Silicon To Sof...
Jan 24, 2022
I just created a handy-dandy one-page Quick-Quick-Start Guide for seniors that covers their most commonly asked questions pertaining to the iPhone SE....

featured video

AI SoC Chats: Understanding Compute Needs for AI SoCs

Sponsored by Synopsys

Will your next system require high performance AI? Learn what the latest systems are using for computation, including AI math, floating point and dot product hardware, and processor IP.

Click here for more information about DesignWare IP for Amazing AI

featured paper

USB-C and USB Power Delivery Solutions

Sponsored by Analog Devices

Every electronic market is rapidly adopting the latest USB Type-C® and USB Power Delivery (USB-PD) specifications. The new USB Type-C cable and connector specifications dramatically simplify the way we interconnect and power electronic gadgets. With the proliferation of battery-operated devices for consumer, medical, automotive, and industrial applications, USB-C is increasingly becoming the preferred universal standard for charging and powering devices.

Click here to read more

featured chalk talk

In-Chip Sensing and PVT Monitoring

Sponsored by Synopsys

In-chip monitoring can significantly alter the lifecycle management landscape. By taking advantage of modern techniques, today’s more complex designs can be optimized even after they are deployed. In this episode of Chalk Talk, Amelia Dalton chats with Stephen Crosher of Synopsys about silicon lifecycle management and how to take full advantage of the optimization opportunities available for scalability, reliability, and much more.

Click here for more information about in-chip monitoring and sensing