industry news
Subscribe Now

New semiconductor device could lead to better photodectectors

UCLA researchers have developed a perovskite photodetector that could reduce manufacturing costs and improve the quality of medical and commercial light sensors.

Photodetectors are semiconductor devices that convert incoming light into electrical signals. They are used in a vast array of products, from visible and infrared light detection systems to television remote controls.

Perovskite is an organic-inorganic hybrid material with a crystal structure that is extraordinarily efficient for converting light into electricity. In recent years, the use of perovskite materials has led to rapid advances in the efficiency of solar cells.

Now a research team led by Yang Yang, the Carol and Lawrence E. Tannas Jr. Professor of Engineering at the UCLA Henry Samueli School of Engineering and Applied Science, has developed a photodetector that uses thin coatings of perovskite — rather than silicon or other common materials. The perovskite coating is roughly 300 nanometers, about the width of a single bacterium, while the silicon layer in common photodetectors is 100 micrometers, or more than 330 times as thick.

As a result, the device efficiently and quickly transports signals with minimum loss. It also offers improved sensitivity under dim light.

The research was published today in Nature Communications.

“This device has the potential to improve the efficiency and contrast in optical sensors used in various applications,” said Yang Yang, principal investigator on the research and a member of the California NanoSystems Institute. “Production requires less energy and time than is currently needed to make photodetectors, and so promises to make manufacturing on the industrial scale very cost-efficient.”

The photodetector is made using a process that essentially coats layers of the device in a liquid form of perovskite at roughly 300 degrees Fahrenheit. The process doesn’t require the energy-consuming high heat or powerful vacuum procedures used to develop today’s commercial photodetectors.

Researchers also inverted the typical design of a perovskite-based photovoltaic cell, altering the materials that interface directly with the perovskite layer to improve its performance, especially response speed.

“Our innovation is using the perovskite material on a photodetector, and then putting it in the proper structure so that the material can work most efficiently,” said Ziruo Hong, one of the authors of the paper and a research engineer in Yang Yang’s lab.

In addition to Yang and Hong, other authors on the work include Letian Dou, who since working on the research has earned a Ph.D. in materials science; graduate student researchers Yang “Micheal” Yang and Wei-Hsuan Chang; post-doctoral researcher Jingbi You; and research engineer Gang Li.

The research was supported by the National Science Foundation and Air Force Office of Scientific Research.

Leave a Reply

featured blogs
Apr 26, 2024
Biological-inspired developments result in LEDs that are 55% brighter, but 55% brighter than what?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Advantech Industrial AI Camera: Small but Mighty
Sponsored by Mouser Electronics and Advantech
Artificial intelligence equipped camera systems can be a great addition to a variety of industrial designs. In this episode of Chalk Talk, Amelia Dalton and Ryan Chan from Advantech explore the components included in an industrial AI camera system, the benefits of Advantech’s AI ICAM-500 Industrial camera series and how you can get started using these solutions in your next industrial design. 
Aug 23, 2023
30,018 views