editor's blog
Subscribe Now

HLS from Scratch

On the heels of the announcement of an entirely new analog design tool suite comes something else surprising. And I can’t quite figure it out.

I received an “announcement” of a new HLS (i.e., nominally, a C-to-VHDL) tool called HercuLeS. Except that the announcement didn’t read like a commercial launch: it read more like a note to friends and colleagues. It was written by Nikolaos Kavvadian, who describes himself in his email signature as “Lecturer, Research scientist, Hardware developer, Ph.D., M.Sc., B.Sc.”

I followed up with him to clarify whether this was a research effort or a commercial launch. He confirmed that this was developed separately from his academic work, and that it is a commercial, not an academic, venture. But apparently it’s not really commercialized yet: you can get to it online, but there’s a web interface that’s going to be released in October. At that point, the tool will still be available for free for limited programs; the pricing for full-on use hasn’t been set yet.

He doesn’t view HercuLeS competing specifically with the usual EDA suspects (which is mostly Catapult C, since Cadence and Synopsys deal with SystemC, not ANSI C). He sees some niche markets that they’ll be focusing on in Q4, including select supercomputing applications and the FPGA+µP (Altera/Intel, Xilinx/ARM) space.

I asked about quality of results (QoR): it’s relatively straightforward to come up with a model for converting software to hardware; the hard part is doing that efficiently, and the incumbents have years of accumulated QoR improvements under their belts. This sets a really high bar for newcomers to be taken seriously. Dr. Kavvadian acknowledged the importance of QoR, asserting that one main contributor to QoR is the intermediate representation (IR) used.

And this seems to be a key to this technology: it’s focused on GIMPLE, a Gnu set of IRs that have front ends to various languages, and NAC, a low-level language they have defined. The language (ANSI C in this case) is mapped to GIMPLE, and they then map that to NAC. NAC can be extended to provide improved mappings to hardware as experience builds. He sees this, along with optimized implementation of black boxes and their model of computation, as the crucial element.

The IR also unlocks something else they have their eye on: possible support of Python and Go or other languages that can be mapped to GIMPLE. Such users are another possible niche market for them.

All in all, I’m not quite sure what to make of this. It’s clearly very engineering driven, and the “launch” lacks many of the standard business trappings – which may not be a bad thing. Just a confusing thing. The business model – or at least the pricing – still aren’t set, so it’s almost like we’re watching this evolve.

We’ll keep an eye to see what happens. Meanwhile you can check here for more information.

Leave a Reply

featured blogs
Apr 19, 2024
In today's rapidly evolving digital landscape, staying at the cutting edge is crucial to success. For MaxLinear, bridging the gap between firmware and hardware development has been pivotal. All of the company's products solve critical communication and high-frequency analysis...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...
Apr 18, 2024
See how Cisco accelerates library characterization and chip design with our cloud EDA tools, scaling access to SoC validation solutions and compute services.The post Cisco Accelerates Project Schedule by 66% Using Synopsys Cloud appeared first on Chip Design....

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured chalk talk

Industrial Internet of Things (IIoT)
Sponsored by Mouser Electronics and Eaton
In this episode of Chalk Talk, Amelia Dalton and Mohammad Mohiuddin from Eaton explore the components, communication protocols, and sensing solutions needed for today’s growing IIoT infrastructure. They take a closer look at how Eaton's circuit protection solutions, magnetics, capacitors and terminal blocks can help you ensure the success of your next industrial internet of things design.
Jun 14, 2023
35,213 views